blob1.tex
changeset 40 b7bc1a931b73
parent 37 2f677e283c26
child 41 ef01b18b42ea
equal deleted inserted replaced
39:5cf5940d1a2c 40:b7bc1a931b73
    52 \def\calc#1{\expandafter\def\csname c#1\endcsname{{\mathcal #1}}}
    52 \def\calc#1{\expandafter\def\csname c#1\endcsname{{\mathcal #1}}}
    53 \applytolist{calc}QWERTYUIOPLKJHGFDSAZXCVBNM;
    53 \applytolist{calc}QWERTYUIOPLKJHGFDSAZXCVBNM;
    54 
    54 
    55 % \DeclareMathOperator{\pr}{pr} etc.
    55 % \DeclareMathOperator{\pr}{pr} etc.
    56 \def\declaremathop#1{\expandafter\DeclareMathOperator\csname #1\endcsname{#1}}
    56 \def\declaremathop#1{\expandafter\DeclareMathOperator\csname #1\endcsname{#1}}
    57 \applytolist{declaremathop}{pr}{im}{id}{gl}{ev}{coinv}{tr}{rot}{Eq}{obj}{mor}{ob}{Rep}{Tet}{cat}{Maps}{Diff}{sign}{supp}{maps};
    57 \applytolist{declaremathop}{pr}{im}{gl}{ev}{coinv}{tr}{rot}{Eq}{obj}{mor}{ob}{Rep}{Tet}{cat}{Maps}{Diff}{sign}{supp}{maps};
    58 
    58 
    59 
    59 
    60 
    60 
    61 %%%%%% end excerpt
    61 %%%%%% end excerpt
    62 
    62 
   761 
   761 
   762 \medskip
   762 \medskip
   763 
   763 
   764 Let $f: P \times X \to X$ be a family of diffeomorphisms and $S \sub X$.
   764 Let $f: P \times X \to X$ be a family of diffeomorphisms and $S \sub X$.
   765 We say that {\it $f$ is supported on $S$} if $f(p, x) = f(q, x)$ for all
   765 We say that {\it $f$ is supported on $S$} if $f(p, x) = f(q, x)$ for all
   766 $x \notin S$ and $p, q \in P$.
   766 $x \notin S$ and $p, q \in P$. Equivalently \todo{really?}, $f$ is supported on $S$ if there is a family of diffeomorphisms $f' : P \times S \to S$ and a `background'
       
   767 diffeomorphism $f_0 : X \to X$ so that
       
   768 \begin{align}
       
   769 \restrict{f}{P \times S}(p,s) & = f_0(f'(p,s)) \\
       
   770 \intertext{and}
       
   771 \restrict{f}{P \times (X \setmin S)}(p,x) & = f_0(x).
       
   772 \end{align}
   767 Note that if $f$ is supported on $S$ then it is also supported on any $R \sup S$.
   773 Note that if $f$ is supported on $S$ then it is also supported on any $R \sup S$.
   768 
   774 
   769 Let $\cU = \{U_\alpha\}$ be an open cover of $X$.
   775 Let $\cU = \{U_\alpha\}$ be an open cover of $X$.
   770 A $k$-parameter family of diffeomorphisms $f: P \times X \to X$ is
   776 A $k$-parameter family of diffeomorphisms $f: P \times X \to X$ is
   771 {\it adapted to $\cU$} if there is a factorization
   777 {\it adapted to $\cU$} if there is a factorization
   777 \eq{
   783 \eq{
   778     f_i :  P_i \times X \to X
   784     f_i :  P_i \times X \to X
   779 }
   785 }
   780 such that
   786 such that
   781 \begin{itemize}
   787 \begin{itemize}
   782 \item each $f_i(p, \cdot): X \to X$ is supported on some connected $V_i \sub X$;
   788 \item each $f_i(p, \cdot): X \to X$\scott{This should just read ``each $f_i$ is supported''} is supported on some connected $V_i \sub X$;
   783 \item the $V_i$'s are mutually disjoint;
   789 \item the sets $V_i$ are mutually disjoint;
   784 \item each $V_i$ is the union of at most $k_i$ of the $U_\alpha$'s,
   790 \item each $V_i$ is the union of at most $k_i$ of the $U_\alpha$'s,
   785 where $k_i = \dim(P_i)$; and
   791 where $k_i = \dim(P_i)$; and
   786 \item $f(p, \cdot) = f_1(p_1, \cdot) \circ \cdots \circ f_m(p_m, \cdot) \circ g$
   792 \item $f(p, \cdot) = f_1(p_1, \cdot) \circ \cdots \circ f_m(p_m, \cdot) \circ g$
   787 for all $p = (p_1, \ldots, p_m)$, for some fixed $g \in \Diff(X)$.
   793 for all $p = (p_1, \ldots, p_m)$, for some fixed $g \in \Diff(X)$.\scott{hmm, can we do $g$ last, instead?}
   788 \end{itemize}
   794 \end{itemize}
   789 A chain $x \in C_k(\Diff(X))$ is (by definition) adapted to $\cU$ if it is the sum
   795 A chain $x \in C_k(\Diff(X))$ is (by definition) adapted to $\cU$ if it is the sum
   790 of singular cells, each of which is adapted to $\cU$.
   796 of singular cells, each of which is adapted to $\cU$.
   791 
   797 
   792 \begin{lemma}  \label{extension_lemma}
   798 \begin{lemma}  \label{extension_lemma}
   913 \nn{say something about associativity here}
   919 \nn{say something about associativity here}
   914 
   920 
   915 \section{Gluing}
   921 \section{Gluing}
   916 \label{sec:gluing}%
   922 \label{sec:gluing}%
   917 
   923 
       
   924 We now turn to establishing the gluing formula for blob homology, restated from Property \ref{property:gluing} in the Introduction
       
   925 \begin{itemize}
       
   926 %\mbox{}% <-- gets the indenting right
       
   927 \item For any $(n-1)$-manifold $Y$, the blob homology of $Y \times I$ is
       
   928 naturally an $A_\infty$ category. % We'll write $\bc_*(Y)$ for $\bc_*(Y \times I)$ below.
       
   929 
       
   930 \item For any $n$-manifold $X$, with $Y$ a codimension $0$-submanifold of its boundary, the blob homology of $X$ is naturally an
       
   931 $A_\infty$ module for $\bc_*(Y \times I)$.
       
   932 
       
   933 \item For any $n$-manifold $X$, with $Y \cup Y^{\text{op}}$ a codimension
       
   934 $0$-submanifold of its boundary, the blob homology of $X'$, obtained from
       
   935 $X$ by gluing along $Y$, is the $A_\infty$ self-tensor product of
       
   936 $\bc_*(X)$ as an $\bc_*(Y \times I)$-bimodule.
       
   937 \begin{equation*}
       
   938 \bc_*(X') \iso \bc_*(X) \Tensor^{A_\infty}_{\mathclap{\bc_*(Y \times I)}}
       
   939 \end{equation*}
       
   940 \todo{How do you write self tensor product?}
       
   941 \end{itemize}
       
   942 
       
   943 Although this gluing formula is stated in terms of $A_\infty$ categories and their (bi-)modules, it will be more natural for us to give alternative
       
   944 definitions of `topological' $A_\infty$-categories and their bimodules, explain how to translate between the `algebraic' and `topological' definitions,
       
   945 and then prove the gluing formula in the topological langauge. Section \ref{sec:topological-A-infty} below explains these definitions, and establishes
       
   946 the desired equivalence. This is quite involved, and in particular requires us to generalise the definition of blob homology to allow $A_\infty$ algebras
       
   947 as inputs, and to re-establish many of the properties of blob homology in this generality. Many readers may prefer to read the
       
   948 Definitions \ref{defn:topological-algebra} and \ref{defn:topological-module} of `topological' $A_\infty$-categories, and Definition \ref{???} of the
       
   949 self-tensor product of a `topological' $A_\infty$-bimodule, then skip to \S \ref{sec:boundary-action} and \S \ref{sec:gluing-formula} for the proofs
       
   950 of the gluing formula in the topological context.
       
   951 
   918 \subsection{`Topological' $A_\infty$ $n$-categories}
   952 \subsection{`Topological' $A_\infty$ $n$-categories}
   919 \label{sec:topological-A-infty}%
   953 \label{sec:topological-A-infty}%
   920 
   954 
   921 This section prepares the ground for establishing Property \ref{property:gluing} by defining the notion of a \emph{topological $A_\infty$-$n$-category}.
   955 This section prepares the ground for establishing Property \ref{property:gluing} by defining the notion of a \emph{topological $A_\infty$-$n$-category}.
   922 The main result of this section is
   956 The main result of this section is
   923 
   957 
   924 \begin{thm}
   958 \begin{thm}
   925 Topological $A_\infty$-$1$-categories are equivalent to `standard'
   959 Topological $A_\infty$-$1$-categories are equivalent to the usual notion of
   926 $A_\infty$-$1$-categories.
   960 $A_\infty$-$1$-categories.
   927 \end{thm}
   961 \end{thm}
   928 
   962 
   929 Before proving this theorem, we embark upon a long string of definitions.
   963 Before proving this theorem, we embark upon a long string of definitions.
   930 For expository purposes, we begin with the $n=1$ special cases, and define
   964 For expository purposes, we begin with the $n=1$ special cases,\scott{Why are we treating the $n>1$ cases at all?} and define
   931 first topological $A_\infty$-algebras, then topological $A_\infty$-categories, and then topological $A_\infty$-modules over these. We then turn
   965 first topological $A_\infty$-algebras, then topological $A_\infty$-categories, and then topological $A_\infty$-modules over these. We then turn
   932 to the general $n$ case, defining topological $A_\infty$-$n$-categories and their modules.
   966 to the general $n$ case, defining topological $A_\infty$-$n$-categories and their modules.
   933 \nn{Something about duals?}
   967 \nn{Something about duals?}
   934 \todo{Explain that we're not making contact with any previous notions for the general $n$ case?}
   968 \todo{Explain that we're not making contact with any previous notions for the general $n$ case?}
   935 \kevin{probably we should say something about the relation
   969 \kevin{probably we should say something about the relation
   953 $I=\left[0,1\right]$, a complex of vector spaces $A(J)$.
   987 $I=\left[0,1\right]$, a complex of vector spaces $A(J)$.
   954 % either roll functoriality into the evaluation map
   988 % either roll functoriality into the evaluation map
   955 \item For each pair of intervals $J,J'$ an `evaluation' chain map
   989 \item For each pair of intervals $J,J'$ an `evaluation' chain map
   956 $\ev_{J \to J'} : \CD{J \to J'} \tensor A(J) \to A(J')$.
   990 $\ev_{J \to J'} : \CD{J \to J'} \tensor A(J) \to A(J')$.
   957 \item For each decomposition of intervals $J = J'\cup J''$,
   991 \item For each decomposition of intervals $J = J'\cup J''$,
   958 a gluing map $\gl_{J,J'} : A(J') \tensor A(J'') \to A(J)$.
   992 a gluing map $\gl_{J',J''} : A(J') \tensor A(J'') \to A(J)$.
   959 % or do it as two separate pieces of data
   993 % or do it as two separate pieces of data
   960 %\item along with an `evaluation' chain map $\ev_J : \CD{J} \tensor A(J) \to A(J)$,
   994 %\item along with an `evaluation' chain map $\ev_J : \CD{J} \tensor A(J) \to A(J)$,
   961 %\item for each diffeomorphism $\phi : J \to J'$, an isomorphism $A(\phi) : A(J) \isoto A(J')$,
   995 %\item for each diffeomorphism $\phi : J \to J'$, an isomorphism $A(\phi) : A(J) \isoto A(J')$,
   962 %\item and for each pair of intervals $J,J'$ a gluing map $\gl_{J,J'} : A(J) \tensor A(J') \to A(J \cup J')$,
   996 %\item and for each pair of intervals $J,J'$ a gluing map $\gl_{J,J'} : A(J) \tensor A(J') \to A(J \cup J')$,
   963 \end{enumerate}
   997 \end{enumerate}
   964 This data is required to satisfy the following conditions.
   998 This data is required to satisfy the following conditions.
   965 \begin{itemize}
   999 \begin{itemize}
   966 \item The evaluation chain map is associative, in that the diagram
  1000 \item The evaluation chain map is associative, in that the diagram
   967 \begin{equation*}
  1001 \begin{equation*}
   968 \xymatrix{
  1002 \xymatrix{
   969 \CD{J' \to J''} \tensor \CD{J \to J'} \tensor A(J) \ar[r]^{\Id \tensor \ev_{J \to J'}} \ar[d]_{\compose \tensor \Id} &
  1003  & \quad \mathclap{\CD{J' \to J''} \tensor \CD{J \to J'} \tensor A(J)} \quad \ar[dr]^{\id \tensor \ev_{J \to J'}} \ar[dl]_{\compose \tensor \id} & \\
   970 \CD{J' \to J''} \tensor A(J') \ar[d]^{\ev_{J' \to J''}} \\
  1004 \CD{J' \to J''} \tensor A(J') \ar[dr]^{\ev_{J' \to J''}} & & \CD{J \to J''} \tensor A(J) \ar[dl]_{\ev_{J \to J''}} \\
   971 \CD{J \to J''} \tensor A(J) \ar[r]_{\ev_{J \to J''}} &
  1005  & A(J'') &
   972 A(J'')
  1006 }
   973 }
  1007 \end{equation*}
   974 \end{equation*}
  1008 commutes up to homotopy.
   975 commutes.
  1009 Here the map $$\compose : \CD{J' \to J''} \tensor \CD{J \to J'} \to \CD{J \to J''}$$ is a composition: take products of singular chains first, then compose diffeomorphisms.
   976 \kevin{commutes up to homotopy? in the blob case the evaluation map is ambiguous up to homotopy}
       
   977 (Here the map $\compose : \CD{J' \to J''} \tensor \CD{J \to J'} \to \CD{J \to J''}$ is a composition: take products of singular chains first, then compose diffeomorphisms.)
       
   978 %% or the version for separate pieces of data:
  1010 %% or the version for separate pieces of data:
   979 %\item If $\phi$ is a diffeomorphism from $J$ to itself, the maps $\ev_J(\phi, -)$ and $A(\phi)$ are the same.
  1011 %\item If $\phi$ is a diffeomorphism from $J$ to itself, the maps $\ev_J(\phi, -)$ and $A(\phi)$ are the same.
   980 %\item The evaluation chain map is associative, in that the diagram
  1012 %\item The evaluation chain map is associative, in that the diagram
   981 %\begin{equation*}
  1013 %\begin{equation*}
   982 %\xymatrix{
  1014 %\xymatrix{
   983 %\CD{J} \tensor \CD{J} \tensor A(J) \ar[r]^{\Id \tensor \ev_J} \ar[d]_{\compose \tensor \Id} &
  1015 %\CD{J} \tensor \CD{J} \tensor A(J) \ar[r]^{\id \tensor \ev_J} \ar[d]_{\compose \tensor \id} &
   984 %\CD{J} \tensor A(J) \ar[d]^{\ev_J} \\
  1016 %\CD{J} \tensor A(J) \ar[d]^{\ev_J} \\
   985 %\CD{J} \tensor A(J) \ar[r]_{\ev_J} &
  1017 %\CD{J} \tensor A(J) \ar[r]_{\ev_J} &
   986 %A(J)
  1018 %A(J)
   987 %}
  1019 %}
   988 %\end{equation*}
  1020 %\end{equation*}
   989 %commutes. (Here the map $\compose : \CD{J} \tensor \CD{J} \to \CD{J}$ is a composition: take products of singular chains first, then use the group multiplication in $\Diff(J)$.)
  1021 %commutes. (Here the map $\compose : \CD{J} \tensor \CD{J} \to \CD{J}$ is a composition: take products of singular chains first, then use the group multiplication in $\Diff(J)$.)
   990 \item The gluing maps are \emph{strictly} associative. That is, given $J$, $J'$ and $J''$, the diagram
  1022 \item The gluing maps are \emph{strictly} associative. That is, given $J$, $J'$ and $J''$, the diagram
   991 \begin{equation*}
  1023 \begin{equation*}
   992 \xymatrix{
  1024 \xymatrix{
   993 A(J) \tensor A(J') \tensor A(J'') \ar[rr]^{\gl_{J,J'} \tensor \Id} \ar[d]_{\Id \tensor \gl_{J',J''}} &&
  1025 A(J) \tensor A(J') \tensor A(J'') \ar[rr]^{\gl_{J,J'} \tensor \id} \ar[d]_{\id \tensor \gl_{J',J''}} &&
   994 A(J \cup J') \tensor A(J'') \ar[d]^{\gl_{J \cup J', J''}} \\
  1026 A(J \cup J') \tensor A(J'') \ar[d]^{\gl_{J \cup J', J''}} \\
   995 A(J) \tensor A(J' \cup J'') \ar[rr]_{\gl_{J, J' \cup J''}} &&
  1027 A(J) \tensor A(J' \cup J'') \ar[rr]_{\gl_{J, J' \cup J''}} &&
   996 A(J \cup J' \cup J'')
  1028 A(J \cup J' \cup J'')
   997 }
  1029 }
   998 \end{equation*}
  1030 \end{equation*}
  1024 interval with boundary conditions $(J, c_-, c_+)$, with $c_-, c_+ \in A(pt)$, and only ask for gluing maps when the boundary conditions match up:
  1056 interval with boundary conditions $(J, c_-, c_+)$, with $c_-, c_+ \in A(pt)$, and only ask for gluing maps when the boundary conditions match up:
  1025 \begin{equation*}
  1057 \begin{equation*}
  1026 \gl : A(J, c_-, c_0) \tensor A(J', c_0, c_+) \to A(J \cup J', c_-, c_+).
  1058 \gl : A(J, c_-, c_0) \tensor A(J', c_0, c_+) \to A(J \cup J', c_-, c_+).
  1027 \end{equation*}
  1059 \end{equation*}
  1028 The action of diffeomorphisms (and of $k$-parameter families of diffeomorphisms) ignores the boundary conditions.
  1060 The action of diffeomorphisms (and of $k$-parameter families of diffeomorphisms) ignores the boundary conditions.
  1029 \todo{we presumably need to say something about $\Id_c \in A(J, c, c)$.}
  1061 \todo{we presumably need to say something about $\id_c \in A(J, c, c)$.}
  1030 
  1062 
  1031 At this point we can give two motivating examples. The first is `chains of maps to $M$' for some fixed target space $M$.
  1063 At this point we can give two motivating examples. The first is `chains of maps to $M$' for some fixed target space $M$.
  1032 \begin{defn}
  1064 \begin{defn}
  1033 Define the topological $A_\infty$ category $C_*(\Maps(\bullet \to M))$ by
  1065 Define the topological $A_\infty$ category $C_*(\Maps(\bullet \to M))$ by
  1034 \begin{enumerate}
  1066 \begin{enumerate}
  1035 \item $A(J) = C_*(\Maps(J \to M))$, singular chains on the space of smooth maps from $J$ to $M$,
  1067 \item $A(J) = C_*(\Maps(J \to M))$, singular chains on the space of smooth maps from $J$ to $M$,
  1036 \item $\ev_{J,J'} : \CD{J \to J'} \tensor A(J) \to A(J')$ is the composition
  1068 \item $\ev_{J,J'} : \CD{J \to J'} \tensor A(J) \to A(J')$ is the composition
  1037 \begin{align*}
  1069 \begin{align*}
  1038 \CD{J \to J'} \tensor C_*(\Maps(J \to M)) & \to C_*(\Diff(J \to J') \times \Maps(J \to M)) \\ & \to C_*(\Maps(J' \to M)),
  1070 \CD{J \to J'} \tensor C_*(\Maps(J \to M)) & \to C_*(\Diff(J \to J') \times \Maps(J \to M)) \\ & \to C_*(\Maps(J' \to M)),
  1039 \end{align*}
  1071 \end{align*}
  1040 where the first map is the product of singular chains, and the second is precomposition by the inverse of a diffeomorphism\todo{inverse, really?!},
  1072 where the first map is the product of singular chains, and the second is precomposition by the inverse of a diffeomorphism,
  1041 \kevin{I think that's fine.  If we recoil at taking inverses,
       
  1042 we should use smooth maps instead of diffeos}
       
  1043 \item $\gl_{J,J'} : A(J) \tensor A(J')$ takes the product of singular chains, then glues maps to $M$ together.
  1073 \item $\gl_{J,J'} : A(J) \tensor A(J')$ takes the product of singular chains, then glues maps to $M$ together.
  1044 \end{enumerate}
  1074 \end{enumerate}
  1045 The associativity conditions are trivially satisfied.
  1075 The associativity conditions are trivially satisfied.
  1046 \end{defn}
  1076 \end{defn}
  1047 
  1077 
  1048 The second example is simply the blob complex of $Y \times J$, for any $n-1$ manifold $Y$. We define $A(J) = \bc_*(Y \times J)$.
  1078 The second example is simply the blob complex of $Y \times J$, for any $n-1$ manifold $Y$. We define $A(J) = \bc_*(Y \times J)$.
  1049 Observe $\Diff(J \to J')$ embeds into $\Diff(Y \times J \to Y \times J')$. The evaluation and gluing maps then come directly from Properties
  1079 Observe $\Diff(J \to J')$ embeds into $\Diff(Y \times J \to Y \times J')$. The evaluation and gluing maps then come directly from Properties
  1050 \ref{property:evaluation} and \ref{property:gluing-map} respectively.
  1080 \ref{property:evaluation} and \ref{property:gluing-map} respectively. We'll often write $bc_*(Y)$ for this algebra.
  1051 
  1081 
  1052 The definition of a module follows closely the definition of an algebra or category.
  1082 The definition of a module follows closely the definition of an algebra or category.
  1053 \begin{defn}
  1083 \begin{defn}
  1054 \label{defn:topological-module}%
  1084 \label{defn:topological-module}%
  1055 A topological $A_\infty$-(left-)module $M$ over a topological $A_\infty$ category $A$
  1085 A topological $A_\infty$-(left-)module $M$ over a topological $A_\infty$ category $A$
  1056 consists of the following data.
  1086 consists of the following data.
  1057 \begin{enumerate}
  1087 \begin{enumerate}
  1058 \item A functor $K \mapsto M(K)$ from $1$-manifolds diffeomorphic to the standard interval, with a marked point on a upper boundary, to complexes of vector spaces.
  1088 \item A functor $K \mapsto M(K)$ from $1$-manifolds diffeomorphic to the standard interval, with the upper boundary point `marked', to complexes of vector spaces.
  1059 \item For each pair of such marked intervals,
  1089 \item For each pair of such marked intervals,
  1060 an `evaluation' chain map $\ev_{K\to K'} : \CD{K \to K'} \tensor M(K) \to M(K')$.
  1090 an `evaluation' chain map $\ev_{K\to K'} : \CD{K \to K'} \tensor M(K) \to M(K')$.
  1061 \item For each decomposition $K = J\cup K'$ of the marked interval
  1091 \item For each decomposition $K = J\cup K'$ of the marked interval
  1062 $K$ into an unmarked interval $J$ and a marked interval $K'$, a gluing map
  1092 $K$ into an unmarked interval $J$ and a marked interval $K'$, a gluing map
  1063 $\gl_{J,K'} : A(J) \tensor M(K') \to M(K)$.
  1093 $\gl_{J,K'} : A(J) \tensor M(K') \to M(K)$.
  1064 \end{enumerate}
  1094 \end{enumerate}
  1065 The above data is required to satisfy
  1095 The above data is required to satisfy
  1066 conditions analogous to those in Definition \ref{defn:topological-algebra}.
  1096 conditions analogous to those in Definition \ref{defn:topological-algebra}.
  1067 \end{defn}
  1097 \end{defn}
  1068 
  1098 
  1069 Any manifold $X$ with $\bdy X = Y$ (or indeed just with $Y$ a codimension $0$-submanifold of $\bdy X$) becomes a topological $A_\infty$ module over
  1099 For any manifold $X$ with $\bdy X = Y$ (or indeed just with $Y$ a codimension $0$-submanifold of $\bdy X$) we can think of $\bc_*(X)$ as
  1070 $\bc_*(Y)$, the topological $A_\infty$ category described above. For each interval $K$, we have $M(K) = \bc_*((Y \times K) \cup_Y X)$.
  1100 a topological $A_\infty$ module over $\bc_*(Y)$, the topological $A_\infty$ category described above.
  1071 (Here we glue $Y \times pt$ to $X$, where $pt$ is the marked point of $K$.) Again, the evaluation and gluing maps come directly from Properties
  1101 For each interval $K$, we have $M(K) = \bc_*((Y \times K) \cup_Y X)$.
       
  1102 (Here we glue $Y \times pt$ to $Y \subset \bdy X$, where $pt$ is the marked point of $K$.) Again, the evaluation and gluing maps come directly from Properties
  1072 \ref{property:evaluation} and \ref{property:gluing-map} respectively.
  1103 \ref{property:evaluation} and \ref{property:gluing-map} respectively.
  1073 
  1104 
  1074 The definition of a bimodule is like the definition of a module,
  1105 The definition of a bimodule is like the definition of a module,
  1075 except that we have two disjoint marked intervals $K$ and $L$, one with a marked point
  1106 except that we have two disjoint marked intervals $K$ and $L$, one with a marked point
  1076 on the upper boundary and the other with a marked point on the lower boundary.
  1107 on the upper boundary and the other with a marked point on the lower boundary.
  1077 There are evaluation maps corresponding to gluing unmarked intervals
  1108 There are evaluation maps corresponding to gluing unmarked intervals
  1078 to the unmarked ends of $K$ and $L$.
  1109 to the unmarked ends of $K$ and $L$.
  1079 
  1110 
  1080 Let $X$ be an $n$-manifold with a copy of $Y \du -Y$ embedded as a
  1111 Let $X$ be an $n$-manifold with a copy of $Y \du -Y$ embedded as a
  1081 codimension-0 submanifold of $\bdy X$.
  1112 codimension-0 submanifold of $\bdy X$.
  1082 Then the the assignment $K,L \mapsto \bc*(X \cup_Y (Y\times K) \cup_{-Y} (-Y\times L))$ has the
  1113 Then the the assignment $K,L \mapsto \bc_*(X \cup_Y (Y\times K) \cup_{-Y} (-Y\times L))$ has the
  1083 structure of a topological $A_\infty$ bimodule over $\bc_*(Y)$.
  1114 structure of a topological $A_\infty$ bimodule over $\bc_*(Y)$.
  1084 
  1115 
  1085 Next we define the coend
  1116 Next we define the coend
  1086 (or gluing or tensor product or self tensor product, depending on the context)
  1117 (or gluing or tensor product or self tensor product, depending on the context)
  1087 $\gl(M)$ of a topological $A_\infty$ bimodule $M$.
  1118 $\gl(M)$ of a topological $A_\infty$ bimodule $M$. This will be an `initial' or `universal' object satisfying various properties.
  1088 $\gl(M)$ is defined to be the universal thing with the following structure.
  1119 \begin{defn}
  1089 
  1120 We define a category $\cG(M)$. Objects consist of the following data.
  1090 \begin{itemize}
  1121 \begin{itemize}
  1091 \item For each interval $N$ with both endpoints marked, a complex of vector spaces C(N).
  1122 \item For each interval $N$ with both endpoints marked, a complex of vector spaces C(N).
  1092 \item For each pair of intervals $N,N'$ an evaluation chain map
  1123 \item For each pair of intervals $N,N'$ an evaluation chain map
  1093 $\ev_{N \to N'} : \CD{N \to N'} \tensor C(N) \to C(N')$.
  1124 $\ev_{N \to N'} : \CD{N \to N'} \tensor C(N) \to C(N')$.
  1094 \item For each decomposition of intervals $N = K\cup L$,
  1125 \item For each decomposition of intervals $N = K\cup L$,
  1095 a gluing map $\gl_{K,L} : M(K,L) \to C(N)$.
  1126 a gluing map $\gl_{K,L} : M(K,L) \to C(N)$.
       
  1127 \end{itemize}
       
  1128 This data must satisfy the following conditions.
       
  1129 \begin{itemize}
  1096 \item The evaluation maps are associative.
  1130 \item The evaluation maps are associative.
  1097 \nn{up to homotopy?}
  1131 \nn{up to homotopy?}
  1098 \item Gluing is strictly associative.
  1132 \item Gluing is strictly associative.
  1099 That is, given a decomposition $N = K\cup J\cup L$, the chain maps associated to
  1133 That is, given a decomposition $N = K\cup J\cup L$, the chain maps associated to
  1100 $K\du J\du L \to (K\cup J)\du L \to N$ and $K\du J\du L \to K\du (J\cup L) \to N$
  1134 $K\du J\du L \to (K\cup J)\du L \to N$ and $K\du J\du L \to K\du (J\cup L) \to N$
  1101 agree.
  1135 agree.
  1102 \item the gluing and evaluation maps are compatible.
  1136 \item the gluing and evaluation maps are compatible.
  1103 \end{itemize}
  1137 \end{itemize}
  1104 
  1138 
  1105 Bu universal we mean that given any other collection of chain complexes, evaluation maps
  1139 A morphism $f$ between such objects $C$ and $C'$ is a chain map $f_N : C(N) \to C'(N)$ for each interval $N$ with both endpoints marked,
  1106 and gluing maps, they factor through the universal thing.
  1140 satisfying the following conditions.
  1107 \nn{need to say this in more detail, in particular give the properties of the factoring map}
  1141 \begin{itemize}
  1108 
  1142 \item For each pair of intervals $N,N'$, the diagram
  1109 Given $X$ and $Y\du -Y \sub \bdy X$ as above, the assignment
  1143 \begin{equation*}
  1110 $N \mapsto \bc_*(X \cup_{Y\du -Y} (N\times Y)$ clearly has the structure described
  1144 \xymatrix{
  1111 in the above bullet points.
  1145 \CD{N \to N'} \tensor C(N) \ar[d]_{\ev} \ar[r]^{\id \tensor f_N} & \CD{N \to N'} \tensor C'(N) \ar[d]^{\ev} \\
  1112 Showing that it is the universal such thing is the content of the gluing theorem proved below.
  1146 C(N) \ar[r]_{f_N} & C'(N)
       
  1147 }
       
  1148 \end{equation*}
       
  1149 commutes.
       
  1150 \item For each decomposition of intervals $N = K \cup L$, the gluing map for $C'$, $\gl'_{K,L} : M(K,L) \to C'(N)$ is the composition
       
  1151 $$M(K,L) \xto{\gl_{K,L}} C(N) \xto{f_N} C'(N).$$
       
  1152 \end{itemize}
       
  1153 \end{defn}
       
  1154 
       
  1155 We now define $\gl(M)$ to be an initial object in the category $\cG{M}$. This just says that for any other object $C'$ in $\cG{M}$,
       
  1156 there are chain maps $f_N: \gl(M)(N) \to C'(N)$, compatible with the action of families of diffeomorphisms, so that the gluing maps $M(K,L) \to C'(N)$
       
  1157 factor through the gluing maps for $\gl(M)$.
       
  1158 
       
  1159 We return to our two favourite examples. First, the coend of the topological $A_\infty$ category $C_*(\Maps(\bullet \to M))$ as a bimodule over itself
       
  1160 is essentially $C_*(\Maps(S^1 \to M))$. \todo{}
       
  1161 
       
  1162 For the second example, given $X$ and $Y\du -Y \sub \bdy X$, the assignment
       
  1163 $$N \mapsto \bc_*(X \cup_{Y\du -Y} (N\times Y))$$ clearly gives an object in $\cG{M}$.
       
  1164 Showing that it is an initial object is the content of the gluing theorem proved below.
  1113 
  1165 
  1114 The definitions for a topological $A_\infty$-$n$-category are very similar to the above
  1166 The definitions for a topological $A_\infty$-$n$-category are very similar to the above
  1115 $n=1$ case.
  1167 $n=1$ case.
  1116 One replaces intervals with manifolds diffeomorphic to the ball $B^n$.
  1168 One replaces intervals with manifolds diffeomorphic to the ball $B^n$.
  1117 Marked points are replaced by copies of $B^{n-1}$ in $\bdy B^n$.
  1169 Marked points are replaced by copies of $B^{n-1}$ in $\bdy B^n$.
  1280 object labels and intervals get 1-morphism labels
  1332 object labels and intervals get 1-morphism labels
  1281 \end{itemize}
  1333 \end{itemize}
  1282 
  1334 
  1283 
  1335 
  1284 \subsection{$A_\infty$ action on the boundary}
  1336 \subsection{$A_\infty$ action on the boundary}
  1285 
  1337 \label{sec:boundary-action}%
  1286 Let $Y$ be an $n{-}1$-manifold.
  1338 Let $Y$ be an $n{-}1$-manifold.
  1287 The collection of complexes $\{\bc_*(Y\times I; a, b)\}$, where $a, b \in \cC(Y)$ are boundary
  1339 The collection of complexes $\{\bc_*(Y\times I; a, b)\}$, where $a, b \in \cC(Y)$ are boundary
  1288 conditions on $\bd(Y\times I) = Y\times \{0\} \cup Y\times\{1\}$, has the structure
  1340 conditions on $\bd(Y\times I) = Y\times \{0\} \cup Y\times\{1\}$, has the structure
  1289 of an $A_\infty$ category.
  1341 of an $A_\infty$ category.
  1290 
  1342 
  1311 In the next section we use the above $A_\infty$ actions to state and prove
  1363 In the next section we use the above $A_\infty$ actions to state and prove
  1312 a gluing theorem for the blob complexes of $n$-manifolds.
  1364 a gluing theorem for the blob complexes of $n$-manifolds.
  1313 
  1365 
  1314 
  1366 
  1315 \subsection{The gluing formula}
  1367 \subsection{The gluing formula}
  1316 
  1368 \label{sec:gluing-formula}%
  1317 Let $Y$ be an $n{-}1$-manifold and let $X$ be an $n$-manifold with a copy
  1369 Let $Y$ be an $n{-}1$-manifold and let $X$ be an $n$-manifold with a copy
  1318 of $Y \du -Y$ contained in its boundary.
  1370 of $Y \du -Y$ contained in its boundary.
  1319 Gluing the two copies of $Y$ together we obtain a new $n$-manifold $X\sgl$.
  1371 Gluing the two copies of $Y$ together we obtain a new $n$-manifold $X\sgl$.
  1320 We wish to describe the blob complex of $X\sgl$ in terms of the blob complex
  1372 We wish to describe the blob complex of $X\sgl$ in terms of the blob complex
  1321 of $X$.
  1373 of $X$.