blob1.tex
changeset 52 c3552b26c3b9
parent 51 195a0a91e062
child 54 ead6bc1a703f
equal deleted inserted replaced
51:195a0a91e062 52:c3552b26c3b9
  1436 Let $\Sigma^\infty(M) = \coprod_{i=0}^\infty \Sigma^i(M)$.
  1436 Let $\Sigma^\infty(M) = \coprod_{i=0}^\infty \Sigma^i(M)$.
  1437 
  1437 
  1438 Let $C_*(X, k)$ denote the singular chain complex of the space $X$ with coefficients in $k$.
  1438 Let $C_*(X, k)$ denote the singular chain complex of the space $X$ with coefficients in $k$.
  1439 
  1439 
  1440 \begin{prop} \label{sympowerprop}
  1440 \begin{prop} \label{sympowerprop}
  1441 $\bc_*(M^n, k[t])$ is homotopy equivalent to $C_*(\Sigma^\infty(M), k)$.
  1441 $\bc_*(M, k[t])$ is homotopy equivalent to $C_*(\Sigma^\infty(M), k)$.
  1442 \end{prop}
  1442 \end{prop}
  1443 
  1443 
  1444 \begin{proof}
  1444 \begin{proof}
  1445 To define the chain maps between the two complexes we will use the following lemma:
  1445 To define the chain maps between the two complexes we will use the following lemma:
  1446 
  1446 
  1550 The components of $\Sigma_m^\infty(M)$ are indexed by $m$-tuples of natural numbers
  1550 The components of $\Sigma_m^\infty(M)$ are indexed by $m$-tuples of natural numbers
  1551 corresponding to the number of points of each color of a configuration.
  1551 corresponding to the number of points of each color of a configuration.
  1552 A proof similar to that of \ref{sympowerprop} shows that
  1552 A proof similar to that of \ref{sympowerprop} shows that
  1553 
  1553 
  1554 \begin{prop}
  1554 \begin{prop}
  1555 $\bc_*(M^n, k[t_1, \ldots, t_m])$ is homotopy equivalent to $C_*(\Sigma_m^\infty(M), k)$.
  1555 $\bc_*(M, k[t_1, \ldots, t_m])$ is homotopy equivalent to $C_*(\Sigma_m^\infty(M), k)$.
  1556 \end{prop}
  1556 \end{prop}
  1557 
  1557 
  1558 According to \nn{Loday, 3.2.2},
  1558 According to \nn{Loday, 3.2.2},
  1559 \[
  1559 \[
  1560 	HH_n(k[t_1, \ldots, t_m]) \cong \Lambda^n(k^m) \otimes k[t_1, \ldots, t_m] .
  1560 	HH_n(k[t_1, \ldots, t_m]) \cong \Lambda^n(k^m) \otimes k[t_1, \ldots, t_m] .
  1567 corresponding to $X$.
  1567 corresponding to $X$.
  1568 The homology calculation we desire follows easily from this.
  1568 The homology calculation we desire follows easily from this.
  1569 
  1569 
  1570 \nn{say something about cyclic homology in this case?  probably not necessary.}
  1570 \nn{say something about cyclic homology in this case?  probably not necessary.}
  1571 
  1571 
  1572 
  1572 \medskip
  1573 
  1573 
  1574 
  1574 Next we consider the case $C = k[t]/t^l$ --- polynomials in $t$ with $t^l = 0$.
       
  1575 Define $\Delta_l \sub \Sigma^\infty(M)$ to be those configurations of points with $l$ or
       
  1576 more points coinciding.
       
  1577 
       
  1578 \begin{prop}
       
  1579 $\bc_*(M, k[t]/t^l)$ is homotopy equivalent to $C_*(\Sigma^\infty(M), \Delta_l, k)$
       
  1580 (relative singular chains with coefficients in $k$).
       
  1581 \end{prop}
       
  1582 
       
  1583 \begin{proof}
       
  1584 \nn{...}
       
  1585 \end{proof}
  1575 
  1586 
  1576 \nn{...}
  1587 \nn{...}
  1577 
  1588 
  1578 
  1589 
  1579 
  1590