text/deligne.tex
changeset 886 c570a7a75b07
parent 879 cf26fcc97d85
child 905 7afa2ffbbac8
equal deleted inserted replaced
885:61541264d4b3 886:c570a7a75b07
   176 We define a map
   176 We define a map
   177 \[
   177 \[
   178 	p(\ol{f}): \hom(\bc_*(M_1), \bc_*(N_1))\ot\cdots\ot\hom(\bc_*(M_k), \bc_*(N_k))
   178 	p(\ol{f}): \hom(\bc_*(M_1), \bc_*(N_1))\ot\cdots\ot\hom(\bc_*(M_k), \bc_*(N_k))
   179 				\to \hom(\bc_*(M_0), \bc_*(N_0)) .
   179 				\to \hom(\bc_*(M_0), \bc_*(N_0)) .
   180 \]
   180 \]
   181 Given $\alpha_i\in\hom(\bc_*(M_i), \bc_*(N_i))$, we define $p(\ol{f}$) to be the composition
   181 Given $\alpha_i\in\hom(\bc_*(M_i), \bc_*(N_i))$, we define 
       
   182 $p(\ol{f})(\alpha_1\ot\cdots\ot\alpha_k)$ to be the composition
   182 \[
   183 \[
   183 	\bc_*(M_0)  \stackrel{f_0}{\to} \bc_*(R_1\cup M_1)
   184 	\bc_*(M_0)  \stackrel{f_0}{\to} \bc_*(R_1\cup M_1)
   184 				 \stackrel{\id\ot\alpha_1}{\to} \bc_*(R_1\cup N_1)
   185 				 \stackrel{\id\ot\alpha_1}{\to} \bc_*(R_1\cup N_1)
   185 				 \stackrel{f_1}{\to} \bc_*(R_2\cup M_2) \stackrel{\id\ot\alpha_2}{\to}
   186 				 \stackrel{f_1}{\to} \bc_*(R_2\cup M_2) \stackrel{\id\ot\alpha_2}{\to}
   186 				 \cdots  \stackrel{\id\ot\alpha_k}{\to} \bc_*(R_k\cup N_k)
   187 				 \cdots  \stackrel{\id\ot\alpha_k}{\to} \bc_*(R_k\cup N_k)
   199 
   200 
   200 \begin{thm}
   201 \begin{thm}
   201 \label{thm:deligne}
   202 \label{thm:deligne}
   202 There is a collection of chain maps
   203 There is a collection of chain maps
   203 \[
   204 \[
   204 	C_*(SC^n_{\overline{M}, \overline{N}})\otimes \hom(\bc_*(M_1), \bc_*(N_1))\otimes\cdots\otimes 
   205 	C_*(SC^n_{\ol{M}\ol{N}})\otimes \hom(\bc_*(M_1), \bc_*(N_1))\otimes\cdots\otimes 
   205 \hom(\bc_*(M_{k}), \bc_*(N_{k})) \to  \hom(\bc_*(M_0), \bc_*(N_0))
   206 \hom(\bc_*(M_{k}), \bc_*(N_{k})) \to  \hom(\bc_*(M_0), \bc_*(N_0))
   206 \]
   207 \]
   207 which satisfy the operad compatibility conditions.
   208 which satisfy the operad compatibility conditions.
   208 On $C_0(SC^n_{\ol{M}\ol{N}})$ this agrees with the chain map $p$ defined above.
   209 On $C_0(SC^n_{\ol{M}\ol{N}})$ this agrees with the chain map $p$ defined above.
   209 When $k=0$, this coincides with the $C_*(\Homeo(M_0\to N_0))$ action of \S\ref{sec:evaluation}.
   210 When $k=0$, this coincides with the $C_*(\Homeo(M_0\to N_0))$ action of \S\ref{sec:evaluation}.
   214 blob cochains.
   215 blob cochains.
   215 As noted above, the $n$-SC operad contains the little $n{+}1$-balls operad, so this constitutes
   216 As noted above, the $n$-SC operad contains the little $n{+}1$-balls operad, so this constitutes
   216 a higher dimensional version of the Deligne conjecture for Hochschild cochains and the little 2-disks operad.
   217 a higher dimensional version of the Deligne conjecture for Hochschild cochains and the little 2-disks operad.
   217 
   218 
   218 \begin{proof}
   219 \begin{proof}
   219 As described above, $SC^n_{\overline{M}, \overline{N}}$ is equal to the disjoint
   220 As described above, $SC^n_{\ol{M}\ol{N}}$ is equal to the disjoint
   220 union of products of homeomorphism spaces, modulo some relations.
   221 union of products of homeomorphism spaces, modulo some relations.
   221 By Theorem \ref{thm:CH} and the Eilenberg-Zilber theorem, we have for each such product $P$
   222 By Theorem \ref{thm:CH} and the Eilenberg-Zilber theorem, we have for each such product $P$
   222 a chain map
   223 a chain map
   223 \[
   224 \[
   224 	C_*(P)\otimes \hom(\bc_*(M_1), \bc_*(N_1))\otimes\cdots\otimes 
   225 	C_*(P)\otimes \hom(\bc_*(M_1), \bc_*(N_1))\otimes\cdots\otimes 
   225 \hom(\bc_*(M_{k}), \bc_*(N_{k})) \to  \hom(\bc_*(M_0), \bc_*(N_0)) .
   226 \hom(\bc_*(M_{k}), \bc_*(N_{k})) \to  \hom(\bc_*(M_0), \bc_*(N_0)) .
   226 \]
   227 \]
   227 It suffices to show that the above maps are compatible with the relations whereby
   228 It suffices to show that the above maps are compatible with the relations whereby
   228 $SC^n_{\overline{M}, \overline{N}}$ is constructed from the various $P$'s.
   229 $SC^n_{\ol{M}\ol{N}}$ is constructed from the various $P$'s.
   229 This in turn follows easily from the fact that
   230 This in turn follows easily from the fact that
   230 the actions of $C_*(\Homeo(\cdot\to\cdot))$ are local (compatible with gluing) and associative.
   231 the actions of $C_*(\Homeo(\cdot\to\cdot))$ are local (compatible with gluing) and associative.
   231 %\nn{should add some detail to above}
   232 %\nn{should add some detail to above}
   232 \end{proof}
   233 \end{proof}
   233 
   234