text/intro.tex
changeset 550 c9f41c18a96f
parent 536 df1f7400d6ef
child 551 9dfb5db2acd7
equal deleted inserted replaced
549:4d2dad357a49 550:c9f41c18a96f
     6 associated to an $n$-manifold $M$ and a linear $n$-category $\cC$ with strong duality.
     6 associated to an $n$-manifold $M$ and a linear $n$-category $\cC$ with strong duality.
     7 This blob complex provides a simultaneous generalization of several well known constructions:
     7 This blob complex provides a simultaneous generalization of several well known constructions:
     8 \begin{itemize}
     8 \begin{itemize}
     9 \item The 0-th homology $H_0(\bc_*(M; \cC))$ is isomorphic to the usual 
     9 \item The 0-th homology $H_0(\bc_*(M; \cC))$ is isomorphic to the usual 
    10 topological quantum field theory invariant of $M$ associated to $\cC$.
    10 topological quantum field theory invariant of $M$ associated to $\cC$.
    11 (See Theorem \ref{thm:skein-modules} later in the introduction and \S \ref{sec:constructing-a-tqft}.)
    11 (See Proposition \ref{thm:skein-modules} later in the introduction and \S \ref{sec:constructing-a-tqft}.)
    12 \item When $n=1$ and $\cC$ is just a 1-category (e.g.\ an associative algebra), 
    12 \item When $n=1$ and $\cC$ is just a 1-category (e.g.\ an associative algebra), 
    13 the blob complex $\bc_*(S^1; \cC)$ is quasi-isomorphic to the Hochschild complex $\HC_*(\cC)$.
    13 the blob complex $\bc_*(S^1; \cC)$ is quasi-isomorphic to the Hochschild complex $\HC_*(\cC)$.
    14 (See Theorem \ref{thm:hochschild} and \S \ref{sec:hochschild}.)
    14 (See Theorem \ref{thm:hochschild} and \S \ref{sec:hochschild}.)
    15 \item When $\cC$ is the polynomial algebra $k[t]$, thought of as an n-category, we have 
    15 \item When $\cC$ is the polynomial algebra $k[t]$, thought of as an n-category, we have 
    16 that $\bc_*(M; k[t])$ is homotopy equivalent to $C_*(\Sigma^\infty(M), k)$, the singular chains
    16 that $\bc_*(M; k[t])$ is homotopy equivalent to $C_*(\Sigma^\infty(M), k)$, the singular chains
   122 	\S \ref{ss:ncat_fields}
   122 	\S \ref{ss:ncat_fields}
   123 	%$\displaystyle \cF(M) = \DirectSum_{c \in\cell(M)} \cC(c)$ \\ $\displaystyle U(B) = \DirectSum_{c \in \cell(B)} \ker \ev: \cC(c) \to \cC(B)$
   123 	%$\displaystyle \cF(M) = \DirectSum_{c \in\cell(M)} \cC(c)$ \\ $\displaystyle U(B) = \DirectSum_{c \in \cell(B)} \ker \ev: \cC(c) \to \cC(B)$
   124    } (FU.100);
   124    } (FU.100);
   125 \draw[->] (C) -- node[above left=3pt] {restrict to \\ standard balls} (tC);
   125 \draw[->] (C) -- node[above left=3pt] {restrict to \\ standard balls} (tC);
   126 \draw[->] (FU.80) -- node[right] {restrict \\ to balls} (C.-80);
   126 \draw[->] (FU.80) -- node[right] {restrict \\ to balls} (C.-80);
   127 \draw[->] (BC) -- node[right] {$H_0$ \\ c.f. Theorem \ref{thm:skein-modules}} (A);
   127 \draw[->] (BC) -- node[right] {$H_0$ \\ c.f. Proposition \ref{thm:skein-modules}} (A);
   128 
   128 
   129 \draw[->] (FU) -- node[left] {blob complex \\ for balls} (Cs);
   129 \draw[->] (FU) -- node[left] {blob complex \\ for balls} (Cs);
   130 \draw[<->] (BC) -- node[right] {$\iso$ by \\ Corollary \ref{cor:new-old}} (BCs);
   130 \draw[<->] (BC) -- node[right] {$\iso$ by \\ Corollary \ref{cor:new-old}} (BCs);
   131 \end{tikzpicture}
   131 \end{tikzpicture}
   132 
   132 
   284 \subsection{Specializations}
   284 \subsection{Specializations}
   285 \label{sec:specializations}
   285 \label{sec:specializations}
   286 
   286 
   287 The blob complex is a simultaneous generalization of the TQFT skein module construction and of Hochschild homology.
   287 The blob complex is a simultaneous generalization of the TQFT skein module construction and of Hochschild homology.
   288 
   288 
   289 \newtheorem*{thm:skein-modules}{Theorem \ref{thm:skein-modules}}
   289 \newtheorem*{thm:skein-modules}{Proposition \ref{thm:skein-modules}}
   290 
   290 
   291 \begin{thm:skein-modules}[Skein modules]
   291 \begin{thm:skein-modules}[Skein modules]
   292 The $0$-th blob homology of $X$ is the usual 
   292 The $0$-th blob homology of $X$ is the usual 
   293 (dual) TQFT Hilbert space (a.k.a.\ skein module) associated to $X$
   293 (dual) TQFT Hilbert space (a.k.a.\ skein module) associated to $X$
   294 by $\cF$.
   294 by $\cF$.
   306 \begin{equation*}
   306 \begin{equation*}
   307 \xymatrix{\bc_*(S^1;\cC) \ar[r]^(0.47){\iso}_(0.47){\text{qi}} & \HC_*(\cC).}
   307 \xymatrix{\bc_*(S^1;\cC) \ar[r]^(0.47){\iso}_(0.47){\text{qi}} & \HC_*(\cC).}
   308 \end{equation*}
   308 \end{equation*}
   309 \end{thm:hochschild}
   309 \end{thm:hochschild}
   310 
   310 
   311 Theorem \ref{thm:skein-modules} is immediate from the definition, and
   311 Proposition \ref{thm:skein-modules} is immediate from the definition, and
   312 Theorem \ref{thm:hochschild} is established in \S \ref{sec:hochschild}.
   312 Theorem \ref{thm:hochschild} is established in \S \ref{sec:hochschild}.
   313 We also note \S \ref{sec:comm_alg} which describes the blob complex when $\cC$ is a one of 
   313 We also note \S \ref{sec:comm_alg} which describes the blob complex when $\cC$ is a one of 
   314 certain commutative algebras thought of as $n$-categories.
   314 certain commutative algebras thought of as $n$-categories.
   315 
   315 
   316 
   316