text/ncat.tex
changeset 259 db18f7c32abe
parent 258 fd5d1647f4f3
child 260 971234b03c4a
equal deleted inserted replaced
258:fd5d1647f4f3 259:db18f7c32abe
  1114 and modules $\cM_\cC$ and $_\cC\cN$,
  1114 and modules $\cM_\cC$ and $_\cC\cN$,
  1115 \[
  1115 \[
  1116 	(\cM_\cC\ot {_\cC\cN})^* \cong  \hom_\cC(\cM_\cC \to (_\cC\cN)^*) .
  1116 	(\cM_\cC\ot {_\cC\cN})^* \cong  \hom_\cC(\cM_\cC \to (_\cC\cN)^*) .
  1117 \]
  1117 \]
  1118 
  1118 
  1119 We must now define the things appearing in the above equation.
  1119 In the next few paragraphs define the things appearing in the above equation:
       
  1120 $\cM_\cC\ot {_\cC\cN}$, $(\cM_\cC\ot {_\cC\cN})^*$, $(_\cC\cN)^*$ and finally
       
  1121 $\hom_\cC$.
  1120 
  1122 
  1121 In the previous subsection we defined a tensor product of $A_\infty$ $n$-cat modules
  1123 In the previous subsection we defined a tensor product of $A_\infty$ $n$-cat modules
  1122 for general $n$.
  1124 for general $n$.
  1123 For $n=1$ this definition is a homotopy colimit indexed by subdivisions of a fixed interval $J$
  1125 For $n=1$ this definition is a homotopy colimit indexed by subdivisions of a fixed interval $J$
  1124 and their gluings (antirefinements).
  1126 and their gluings (antirefinements).
  1133 \]
  1135 \]
  1134 (If $D$ denotes the subdivision of $J$, then we denote this complex by $\psi(D)$.)
  1136 (If $D$ denotes the subdivision of $J$, then we denote this complex by $\psi(D)$.)
  1135 To each antirefinement we associate a chain map using the composition law of $\cC$ and the 
  1137 To each antirefinement we associate a chain map using the composition law of $\cC$ and the 
  1136 module actions of $\cC$ on $\cM$ and $\cN$.
  1138 module actions of $\cC$ on $\cM$ and $\cN$.
  1137 \def\olD{{\overline D}}
  1139 \def\olD{{\overline D}}
       
  1140 \def\cbar{{\bar c}}
  1138 The underlying graded vector space of the homotopy colimit is
  1141 The underlying graded vector space of the homotopy colimit is
  1139 \[
  1142 \[
  1140 	\bigoplus_l \bigoplus_{\olD} \psi(D_0)[l] ,
  1143 	\bigoplus_l \bigoplus_{\olD} \psi(D_0)[l] ,
  1141 \]
  1144 \]
  1142 where $l$ runs through the natural numbers, $\olD = (D_0\to D_1\to\cdots\to D_l)$
  1145 where $l$ runs through the natural numbers, $\olD = (D_0\to D_1\to\cdots\to D_l)$
  1143 runs through chains of antirefinements, and $[l]$ denotes a grading shift.
  1146 runs through chains of antirefinements, and $[l]$ denotes a grading shift.
       
  1147 We will denote an element of the summand indexed by $\olD$ by
       
  1148 $\olD\ot m\ot\cbar\ot n$, where $m\ot\cbar\ot n \in \psi(D_0)$.
       
  1149 The boundary map is given (ignoring signs) by
       
  1150 \begin{eqnarray*}
       
  1151 	\bd(\olD\ot m\ot\cbar\ot n) &=& \olD\ot\bd(m\ot\cbar)\ot n + \olD\ot m\ot\cbar\ot \bd n + \\
       
  1152 			& & \;\;	(\bd_+ \olD)\ot m\ot\cbar\ot n + (\bd_0 \olD)\ot \rho(m\ot\cbar\ot n) ,
       
  1153 \end{eqnarray*}
       
  1154 where $\bd_+ \olD = \sum_{i>0} (D_0, \cdots \widehat{D_i} \cdots , D_l)$ (the part of the simplicial
       
  1155 boundary which retains $D_0$), $\bd_0 \olD = (D_1, \cdots , D_l)$,
       
  1156 and $\rho$ is the gluing map associated to the antirefinement $D_0\to D_1$.
       
  1157 
       
  1158 $(\cM_\cC\ot {_\cC\cN})^*$ is just the dual chain complex to $\cM_\cC\ot {_\cC\cN}$:
       
  1159 \[
       
  1160 	\prod_l \prod_{\olD} (\psi(D_0)[l])^* ,
       
  1161 \]
       
  1162 where $(\psi(D_0)[l])^*$ denotes the linear dual.
       
  1163 The boundary is given by
       
  1164 \begin{eqnarray*}
       
  1165 	(\bd f)(\olD\ot m\ot\cbar\ot n) &=& f(\olD\ot\bd(m\ot\cbar)\ot n) + 
       
  1166 													f(\olD\ot m\ot\cbar\ot \bd n) + \\
       
  1167 			& & \;\;	f((\bd_+ \olD)\ot m\ot\cbar\ot n) + f((\bd_0 \olD)\ot \rho(m\ot\cbar\ot n)) .
       
  1168 \end{eqnarray*}
       
  1169 (Again, we are ignoring signs.)
       
  1170 
       
  1171 Next we define the dual module $(_\cC\cN)^*$.
       
  1172 This will depend on a choice of interval $J$, just as the tensor product did.
       
  1173 Recall that $_\cC\cN$ is, among other things, a functor from right-marked intervals
       
  1174 to chain complexes.
       
  1175 Given $J$, we define for each $K\sub J$ which contains the {\it left} endpoint of $J$
       
  1176 \[
       
  1177 	(_\cC\cN)^*(K) \deq ({_\cC\cN}(J\setmin K))^* ,
       
  1178 \]
       
  1179 where $({_\cC\cN}(J\setmin K))^*$ denotes the (linear) dual of the chain complex associated
       
  1180 to the right-marked interval $J\setmin K$.
       
  1181 This extends to a functor from all left-marked intervals (not just those contained in $J$).
       
  1182 It's easy to verify the remaining module axioms.
       
  1183 
       
  1184 Now re reinterpret $(\cM_\cC\ot {_\cC\cN})^*$
       
  1185 as some sort of morphism $\cM_\cC \to (_\cC\cN)^*$.
  1144 
  1186 
  1145 \nn{...}
  1187 \nn{...}
  1146 
  1188 
  1147 
  1189 
  1148 
  1190 
  1155 \subsection{The $n{+}1$-category of sphere modules}
  1197 \subsection{The $n{+}1$-category of sphere modules}
  1156 \label{ssec:spherecat}
  1198 \label{ssec:spherecat}
  1157 
  1199 
  1158 In this subsection we define an $n{+}1$-category $\cS$ of ``sphere modules" 
  1200 In this subsection we define an $n{+}1$-category $\cS$ of ``sphere modules" 
  1159 whose objects correspond to $n$-categories.
  1201 whose objects correspond to $n$-categories.
  1160 This is a version of the familiar algebras-bimodules-intertwiners 2-category.
  1202 When $n=2$
       
  1203 this is a version of the familiar algebras-bimodules-intertwiners 2-category.
  1161 (Terminology: It is clearly appropriate to call an $S^0$ module a bimodule,
  1204 (Terminology: It is clearly appropriate to call an $S^0$ module a bimodule,
  1162 but this is much less true for higher dimensional spheres, 
  1205 but this is much less true for higher dimensional spheres, 
  1163 so we prefer the term ``sphere module" for the general case.)
  1206 so we prefer the term ``sphere module" for the general case.)
  1164 
  1207 
  1165 The $0$- through $n$-dimensional parts of $\cC$ are various sorts of modules, and we describe
  1208 The $0$- through $n$-dimensional parts of $\cC$ are various sorts of modules, and we describe
  1166 these first.
  1209 these first.
  1167 The $n{+}1$-dimensional part of $\cS$ consist of intertwiners
  1210 The $n{+}1$-dimensional part of $\cS$ consists of intertwiners
  1168 (of garden-variety $1$-category modules associated to decorated $n$-balls).
  1211 (of garden-variety $1$-category modules associated to decorated $n$-balls).
  1169 We will see below that in order for these $n{+}1$-morphisms to satisfy all of
  1212 We will see below that in order for these $n{+}1$-morphisms to satisfy all of
  1170 the duality requirements of an $n{+}1$-category, we will have to assume
  1213 the duality requirements of an $n{+}1$-category, we will have to assume
  1171 that our $n$-categories and modules have non-degenerate inner products.
  1214 that our $n$-categories and modules have non-degenerate inner products.
  1172 (In other words, we need to assume some extra duality on the $n$-categories and modules.)
  1215 (In other words, we need to assume some extra duality on the $n$-categories and modules.)