text/ncat.tex
changeset 106 dd4b4ac15023
parent 105 d2409e357801
child 107 60bb1039be50
equal deleted inserted replaced
105:d2409e357801 106:dd4b4ac15023
   562 \medskip
   562 \medskip
   563 
   563 
   564 Next we consider tensor products (or, more generally, self tensor products
   564 Next we consider tensor products (or, more generally, self tensor products
   565 or coends).
   565 or coends).
   566 
   566 
   567 
   567 \nn{start with (less general) tensor products; maybe change this later}
       
   568 
       
   569 Define a {\it doubly marked $k$-ball} to be a triple $(B, N, N')$, where $B$ is a $k$-ball
       
   570 and $N$ and $N'$ are disjoint $k{-}1$-balls in $\bd B$.
       
   571 
       
   572 Let $\cM$ and $\cM'$ be modules for an $n$-category $\cC$.
       
   573 (If $k=1$ and manifolds are oriented, then one should be 
       
   574 a left module and the other a right module.)
       
   575 Let $D = (B, N, N')$ be a doubly marked $k$-ball, $1\le k \le n$.
       
   576 We will define a set $\cM\ot_\cC\cM'(D)$.
       
   577 (If $k = n$ and our $k$-categories are enriched, then
       
   578 $\cM\ot_\cC\cM'(D)$ will have additional structure; see below.)
       
   579 $\cM\ot_\cC\cM'(D)$ will be the colimit of a functor defined on a category $\cJ(D)$,
       
   580 which we define next.
       
   581 
       
   582 Define a permissible decomposition of $D$ to be a decomposition
       
   583 \[
       
   584 	D = (\cup_a X_a) \cup (\cup_b M_b) \cup (\cup_c M'_c) ,
       
   585 \]
       
   586 Where each $X_a$ is a plain $k$-ball (disjoint from the markings $N$ and $N'$ of $D$),
       
   587 each $M_b$ is a marked $k$-ball intersecting $N$, and
       
   588 each $M'_b$ is a marked $k$-ball intersecting $N'$.
       
   589 Given permissible decompositions $x$ and $y$, we say that $x$ is a refinement
       
   590 of $y$, or write $x \le y$, if each ball of $y$ is a union of balls of $x$.
       
   591 This defines a partial ordering $\cJ(D)$, which we will think of as a category.
       
   592 (The objects of $\cJ(D)$ are permissible decompositions of $D$, and there is a unique
       
   593 morphism from $x$ to $y$ if and only if $x$ is a refinement of $y$.)
       
   594 \nn{need figures}
       
   595 
       
   596 $\cC$, $\cM$ and $\cM'$ determine 
       
   597 a functor $\psi$ from $\cJ(D)$ to the category of sets 
       
   598 (possibly with additional structure if $k=n$).
       
   599 For a decomposition $x = (X_a, M_b, M'_c)$ in $\cJ(D)$, define $\psi(x)$ to subset
       
   600 \[
       
   601 	\psi(x) \sub (\prod_a \cC(X_a)) \prod (\prod_b \cM(M_b)) \prod (\prod_c \cM'(M'_c))
       
   602 \]
       
   603 such that the restrictions to the various pieces of shared boundaries amongst the
       
   604 $X_a$, $M_b$ and $M'_c$ all agree.
       
   605 (Think fibered product.)
       
   606 If $x$ is a refinement of $y$, define a map $\psi(x)\to\psi(y)$
       
   607 via the gluing (composition or action) maps from $\cC$, $\cM$ and $\cM'$.
       
   608 
       
   609 Finally, define $\cM\ot_\cC\cM'(D)$ to be the colimit of $\psi$.
       
   610 In other words, for each decomposition $x$ there is a map
       
   611 $\psi(x)\to \cM\ot_\cC\cM'(D)$, these maps are compatible with the refinement maps
       
   612 above, and $\cM\ot_\cC\cM'(D)$ is universal with respect to these properties.
       
   613 
       
   614 Note that if $k=n$ and we fix boundary conditions $c$ on the unmarked boundary of $D$,
       
   615 then $\cM\ot_\cC\cM'(D; c)$ will be an object in the enriching category
       
   616 (e.g.\ vector space or chain complex).
       
   617 \nn{say this more precisely?}
   568 
   618 
   569 \medskip
   619 \medskip
   570 \hrule
   620 \hrule
   571 \medskip
   621 \medskip
   572 
   622