pnas/pnas.tex
changeset 609 ddf9c4daf210
parent 608 455106e40a61
child 610 357f8673564f
equal deleted inserted replaced
608:455106e40a61 609:ddf9c4daf210
   215 deduce gluing formulas based on $A_\infty$ tensor products.
   215 deduce gluing formulas based on $A_\infty$ tensor products.
   216 
   216 
   217 \nn{Triangulated categories are important; often calculations are via exact sequences,
   217 \nn{Triangulated categories are important; often calculations are via exact sequences,
   218 and the standard TQFT constructions are quotients, which destroy exactness.}
   218 and the standard TQFT constructions are quotients, which destroy exactness.}
   219 
   219 
       
   220 \nn{In many places we omit details; they can be found in MW.
       
   221 (Blanket statement in order to avoid too many citations to MW.)}
   220 
   222 
   221 \section{Definitions}
   223 \section{Definitions}
   222 \subsection{$n$-categories} \mbox{}
   224 \subsection{$n$-categories} \mbox{}
   223 
   225 
   224 \nn{rough draft of n-cat stuff...}
   226 \nn{rough draft of n-cat stuff...}
   679      \CH{X \bigcup_Y \selfarrow} \otimes \bc_*(X \bigcup_Y \selfarrow) \ar[r]_<<<<<<<{e_{(X \bigcup_Y \scalebox{0.5}{\selfarrow})}}    & \bc_*(X \bigcup_Y \selfarrow)
   681      \CH{X \bigcup_Y \selfarrow} \otimes \bc_*(X \bigcup_Y \selfarrow) \ar[r]_<<<<<<<{e_{(X \bigcup_Y \scalebox{0.5}{\selfarrow})}}    & \bc_*(X \bigcup_Y \selfarrow)
   680 }
   682 }
   681 \end{equation*}
   683 \end{equation*}
   682 \end{enumerate}
   684 \end{enumerate}
   683 
   685 
   684 Futher, this map is associative, in the sense that the following diagram commutes (up to homotopy).
   686 Further, this map is associative, in the sense that the following diagram commutes (up to homotopy).
   685 \begin{equation*}
   687 \begin{equation*}
   686 \xymatrix{
   688 \xymatrix{
   687 \CH{X} \tensor \CH{X} \tensor \bc_*(X) \ar[r]^<<<<<{\id \tensor e_X} \ar[d]^{\compose \tensor \id} & \CH{X} \tensor \bc_*(X) \ar[d]^{e_X} \\
   689 \CH{X} \tensor \CH{X} \tensor \bc_*(X) \ar[r]^<<<<<{\id \tensor e_X} \ar[d]^{\compose \tensor \id} & \CH{X} \tensor \bc_*(X) \ar[d]^{e_X} \\
   688 \CH{X} \tensor \bc_*(X) \ar[r]^{e_X} & \bc_*(X)
   690 \CH{X} \tensor \bc_*(X) \ar[r]^{e_X} & \bc_*(X)
   689 }
   691 }
   690 \end{equation*}
   692 \end{equation*}
   691 \end{thm}
   693 \end{thm}
   692 
   694 
       
   695 \nn{if we need to save space, I think this next paragraph could be cut}
   693 Since the blob complex is functorial in the manifold $X$, this is equivalent to having chain maps
   696 Since the blob complex is functorial in the manifold $X$, this is equivalent to having chain maps
   694 $$ev_{X \to Y} : \CH{X \to Y} \tensor \bc_*(X) \to \bc_*(Y)$$
   697 $$ev_{X \to Y} : \CH{X \to Y} \tensor \bc_*(X) \to \bc_*(Y)$$
   695 for any homeomorphic pair $X$ and $Y$, 
   698 for any homeomorphic pair $X$ and $Y$, 
   696 satisfying corresponding conditions.
   699 satisfying corresponding conditions.
   697 
   700 
   698 \nn{Say stuff here!}
   701 \begin{proof}(Sketch.)
       
   702 The most convenient way to prove this is to introduce yet another homotopy equivalent version of
       
   703 the blob complex, $\cB\cT_*(X)$.
       
   704 Blob diagrams have a natural topology, which is ignored by $\bc_*(X)$.
       
   705 In $\cB\cT_*(X)$ we take this topology into account, treating the blob diagrams as something
       
   706 analogous to a simplicial space (but with cone-product polyhedra replacing simplices).
       
   707 More specifically, a generator of $\cB\cT_k(X)$ is an $i$-parameter family of $j$-blob diagrams, with $i+j=k$.
       
   708 
       
   709 With this alternate version in hand, it is straightforward to prove the theorem.
       
   710 The evaluation map $\Homeo(X)\times BD_j(X)\to BD_j(X)$
       
   711 induces a chain map $\CH{X}\ot C_*(BD_j(X))\to C_*(BD_j(X))$
       
   712 and hence a map $e_X: \CH{X} \ot \cB\cT_*(X) \to \cB\cT_*(X)$.
       
   713 It is easy to check that $e_X$ thus defined has the desired properties.
       
   714 \end{proof}
   699 
   715 
   700 \begin{thm}
   716 \begin{thm}
   701 \label{thm:blobs-ainfty}
   717 \label{thm:blobs-ainfty}
   702 Let $\cC$ be  a topological $n$-category.
   718 Let $\cC$ be  a topological $n$-category.
   703 Let $Y$ be an $n{-}k$-manifold. 
   719 Let $Y$ be an $n{-}k$-manifold.