text/definitions.tex
changeset 140 e0b304e6b975
parent 139 57291331fd82
child 141 e1d24be683bb
equal deleted inserted replaced
139:57291331fd82 140:e0b304e6b975
     3 \section{TQFTs via fields}
     3 \section{TQFTs via fields}
     4 %\label{sec:definitions}
     4 %\label{sec:definitions}
     5 
     5 
     6 In this section we review the construction of TQFTs from ``topological fields".
     6 In this section we review the construction of TQFTs from ``topological fields".
     7 For more details see xxxx.
     7 For more details see xxxx.
       
     8 
       
     9 We only consider compact manifolds, so if $Y \sub X$ is a closed codimension 0
       
    10 submanifold of $X$, then $X \setmin Y$ implicitly means the closure
       
    11 $\overline{X \setmin Y}$.
       
    12 
     8 
    13 
     9 \subsection{Systems of fields}
    14 \subsection{Systems of fields}
    10 \label{sec:fields}
    15 \label{sec:fields}
    11 
    16 
    12 Let $\cM_k$ denote the category with objects 
    17 Let $\cM_k$ denote the category with objects 
   344 Let $X$ be an $n$-manifold.
   349 Let $X$ be an $n$-manifold.
   345 Assume a fixed system of fields and local relations.
   350 Assume a fixed system of fields and local relations.
   346 In this section we will usually suppress boundary conditions on $X$ from the notation
   351 In this section we will usually suppress boundary conditions on $X$ from the notation
   347 (e.g. write $\lf(X)$ instead of $\lf(X; c)$).
   352 (e.g. write $\lf(X)$ instead of $\lf(X; c)$).
   348 
   353 
   349 We only consider compact manifolds, so if $Y \sub X$ is a closed codimension 0
   354 We want to replace the quotient
   350 submanifold of $X$, then $X \setmin Y$ implicitly means the closure
   355 \[
   351 $\overline{X \setmin Y}$.
   356 	A(X) \deq \lf(X) / U(X)
       
   357 \]
       
   358 of the previous section with a resolution
       
   359 \[
       
   360 	\cdots \to \bc_2(X) \to \bc_1(X) \to \bc_0(X) .
       
   361 \]
   352 
   362 
   353 We will define $\bc_0(X)$, $\bc_1(X)$ and $\bc_2(X)$, then give the general case $\bc_k(X)$.
   363 We will define $\bc_0(X)$, $\bc_1(X)$ and $\bc_2(X)$, then give the general case $\bc_k(X)$.
   354 
   364 
   355 Define $\bc_0(X) = \lf(X)$.
   365 We of course define $\bc_0(X) = \lf(X)$.
   356 (If $X$ has nonempty boundary, instead define $\bc_0(X; c) = \lf(X; c)$.
   366 (If $X$ has nonempty boundary, instead define $\bc_0(X; c) = \lf(X; c)$.
   357 We'll omit this sort of detail in the rest of this section.)
   367 We'll omit this sort of detail in the rest of this section.)
   358 In other words, $\bc_0(X)$ is just the space of all linearized fields on $X$.
   368 In other words, $\bc_0(X)$ is just the space of all linearized fields on $X$.
   359 
   369 
   360 $\bc_1(X)$ is, roughly, the space of all local relations that can be imposed on $\bc_0(X)$.
   370 $\bc_1(X)$ is, roughly, the space of all local relations that can be imposed on $\bc_0(X)$.
   365 \item A field $r \in \cC(X \setmin B; c)$
   375 \item A field $r \in \cC(X \setmin B; c)$
   366 (for some $c \in \cC(\bd B) = \cC(\bd(X \setmin B))$).
   376 (for some $c \in \cC(\bd B) = \cC(\bd(X \setmin B))$).
   367 \item A local relation field $u \in U(B; c)$
   377 \item A local relation field $u \in U(B; c)$
   368 (same $c$ as previous bullet).
   378 (same $c$ as previous bullet).
   369 \end{itemize}
   379 \end{itemize}
       
   380 (See Figure \ref{blob1diagram}.)
       
   381 \begin{figure}[!ht]\begin{equation*}
       
   382 \mathfig{.9}{tempkw/blob1diagram}
       
   383 \end{equation*}\caption{A 1-blob diagram.}\label{blob1diagram}\end{figure}
   370 In order to get the linear structure correct, we (officially) define
   384 In order to get the linear structure correct, we (officially) define
   371 \[
   385 \[
   372 	\bc_1(X) \deq \bigoplus_B \bigoplus_c U(B; c) \otimes \lf(X \setmin B; c) .
   386 	\bc_1(X) \deq \bigoplus_B \bigoplus_c U(B; c) \otimes \lf(X \setmin B; c) .
   373 \]
   387 \]
   374 The first direct sum is indexed by all blobs $B\subset X$, and the second
   388 The first direct sum is indexed by all blobs $B\subset X$, and the second
   398 \item A pair of closed balls (blobs) $B_0, B_1 \sub X$ with disjoint interiors.
   412 \item A pair of closed balls (blobs) $B_0, B_1 \sub X$ with disjoint interiors.
   399 \item A field $r \in \cC(X \setmin (B_0 \cup B_1); c_0, c_1)$
   413 \item A field $r \in \cC(X \setmin (B_0 \cup B_1); c_0, c_1)$
   400 (where $c_i \in \cC(\bd B_i)$).
   414 (where $c_i \in \cC(\bd B_i)$).
   401 \item Local relation fields $u_i \in U(B_i; c_i)$, $i=1,2$.
   415 \item Local relation fields $u_i \in U(B_i; c_i)$, $i=1,2$.
   402 \end{itemize}
   416 \end{itemize}
       
   417 (See Figure \ref{blob2ddiagram}.)
       
   418 \begin{figure}[!ht]\begin{equation*}
       
   419 \mathfig{.9}{tempkw/blob2ddiagram}
       
   420 \end{equation*}\caption{A disjoint 2-blob diagram.}\label{blob2ddiagram}\end{figure}
   403 We also identify $(B_0, B_1, u_0, u_1, r)$ with $-(B_1, B_0, u_1, u_0, r)$;
   421 We also identify $(B_0, B_1, u_0, u_1, r)$ with $-(B_1, B_0, u_1, u_0, r)$;
   404 reversing the order of the blobs changes the sign.
   422 reversing the order of the blobs changes the sign.
   405 Define $\bd(B_0, B_1, u_0, u_1, r) = 
   423 Define $\bd(B_0, B_1, u_0, u_1, r) = 
   406 (B_1, u_1, u_0\bullet r) - (B_0, u_0, u_1\bullet r) \in \bc_1(X)$.
   424 (B_1, u_1, u_0\bullet r) - (B_0, u_0, u_1\bullet r) \in \bc_1(X)$.
   407 In other words, the boundary of a disjoint 2-blob diagram
   425 In other words, the boundary of a disjoint 2-blob diagram
   414 \item A pair of nested balls (blobs) $B_0 \sub B_1 \sub X$.
   432 \item A pair of nested balls (blobs) $B_0 \sub B_1 \sub X$.
   415 \item A field $r \in \cC(X \setmin B_0; c_0)$
   433 \item A field $r \in \cC(X \setmin B_0; c_0)$
   416 (for some $c_0 \in \cC(\bd B_0)$), which is splittable along $\bd B_1$.
   434 (for some $c_0 \in \cC(\bd B_0)$), which is splittable along $\bd B_1$.
   417 \item A local relation field $u_0 \in U(B_0; c_0)$.
   435 \item A local relation field $u_0 \in U(B_0; c_0)$.
   418 \end{itemize}
   436 \end{itemize}
       
   437 (See Figure \ref{blob2ndiagram}.)
       
   438 \begin{figure}[!ht]\begin{equation*}
       
   439 \mathfig{.9}{tempkw/blob2ndiagram}
       
   440 \end{equation*}\caption{A nested 2-blob diagram.}\label{blob2ndiagram}\end{figure}
   419 Let $r = r_1 \bullet r'$, where $r_1 \in \cC(B_1 \setmin B_0; c_0, c_1)$
   441 Let $r = r_1 \bullet r'$, where $r_1 \in \cC(B_1 \setmin B_0; c_0, c_1)$
   420 (for some $c_1 \in \cC(B_1)$) and
   442 (for some $c_1 \in \cC(B_1)$) and
   421 $r' \in \cC(X \setmin B_1; c_1)$.
   443 $r' \in \cC(X \setmin B_1; c_1)$.
   422 Define $\bd(B_0, B_1, u_0, r) = (B_1, u_0\bullet r_1, r') - (B_0, u_0, r)$.
   444 Define $\bd(B_0, B_1, u_0, r) = (B_1, u_0\bullet r_1, r') - (B_0, u_0, r)$.
   423 Note that the requirement that
   445 Note that the requirement that
   424 local relations are an ideal with respect to gluing guarantees that $u_0\bullet r_1 \in U(B_1)$.
   446 local relations are an ideal with respect to gluing guarantees that $u_0\bullet r_1 \in U(B_1)$.
   425 As in the disjoint 2-blob case, the boundary of a nested 2-blob is the alternating
   447 As in the disjoint 2-blob case, the boundary of a nested 2-blob is the alternating
   426 sum of the two ways of erasing one of the blobs.
   448 sum of the two ways of erasing one of the blobs.
   427 If we erase the inner blob, the outer blob inherits the label $u_0\bullet r_1$.
   449 If we erase the inner blob, the outer blob inherits the label $u_0\bullet r_1$.
   428 It is again easy to check that $\bd^2 = 0$.
   450 It is again easy to check that $\bd^2 = 0$.
   429 
       
   430 \nn{should draw figures for 1, 2 and $k$-blob diagrams}
       
   431 
   451 
   432 As with the 1-blob diagrams, in order to get the linear structure correct it is better to define
   452 As with the 1-blob diagrams, in order to get the linear structure correct it is better to define
   433 (officially)
   453 (officially)
   434 \begin{eqnarray*}
   454 \begin{eqnarray*}
   435 	\bc_2(X) & \deq &
   455 	\bc_2(X) & \deq &
   467 $r$ is required to be splittable along the boundaries of all blobs, twigs or not.
   487 $r$ is required to be splittable along the boundaries of all blobs, twigs or not.
   468 \item For each twig blob $B_j$ a local relation field $u_j \in U(B_j; c_j)$,
   488 \item For each twig blob $B_j$ a local relation field $u_j \in U(B_j; c_j)$,
   469 where $c_j$ is the restriction of $c^t$ to $\bd B_j$.
   489 where $c_j$ is the restriction of $c^t$ to $\bd B_j$.
   470 If $B_i = B_j$ then $u_i = u_j$.
   490 If $B_i = B_j$ then $u_i = u_j$.
   471 \end{itemize}
   491 \end{itemize}
       
   492 (See Figure \ref{blobkdiagram}.)
       
   493 \begin{figure}[!ht]\begin{equation*}
       
   494 \mathfig{.9}{tempkw/blobkdiagram}
       
   495 \end{equation*}\caption{A $k$-blob diagram.}\label{blobkdiagram}\end{figure}
   472 
   496 
   473 If two blob diagrams $D_1$ and $D_2$ 
   497 If two blob diagrams $D_1$ and $D_2$ 
   474 differ only by a reordering of the blobs, then we identify
   498 differ only by a reordering of the blobs, then we identify
   475 $D_1 = \pm D_2$, where the sign is the sign of the permutation relating $D_1$ and $D_2$.
   499 $D_1 = \pm D_2$, where the sign is the sign of the permutation relating $D_1$ and $D_2$.
   476 
   500