blob1.tex
changeset 31 e155c518ce31
parent 30 e62258f302d6
child 32 538f38ddf395
equal deleted inserted replaced
30:e62258f302d6 31:e155c518ce31
  1117 Let $\tm_1(a) = a$.
  1117 Let $\tm_1(a) = a$.
  1118 
  1118 
  1119 We now define $\bdy(\tm_k(a_1 \tensor \cdots \tensor a_k))$, first giving an opaque formula, then explaining the combinatorics behind it.
  1119 We now define $\bdy(\tm_k(a_1 \tensor \cdots \tensor a_k))$, first giving an opaque formula, then explaining the combinatorics behind it.
  1120 \begin{align}
  1120 \begin{align}
  1121 \notag \bdy(\tm_k(a_1 & \tensor \cdots \tensor a_k)) = \\
  1121 \notag \bdy(\tm_k(a_1 & \tensor \cdots \tensor a_k)) = \\
  1122 \label{eq:bdy-tm-k-1}   & \phantom{+} \sum_{i=1}^k (-1)^{\sum_{j=1}^{i-1} \deg(a_j)} \tm_k(a_1 \tensor \cdots \tensor \bdy a_i \tensor \cdots \tensor a_k) + \\
  1122 \label{eq:bdy-tm-k-1}   & \phantom{+} \sum_{\ell'=0}^{k-1} (-1)^{\sum_{j=1}^{\ell'} \deg(a_j)} \tm_k(a_1 \tensor \cdots \tensor \bdy a_{\ell'+1} \tensor \cdots \tensor a_k) + \\
  1123 \label{eq:bdy-tm-k-2}   &          +  \sum_{\ell=1}^{k-1} \tm_{\ell}(a_1 \tensor \cdots \tensor a_{\ell}) \tensor \tm_{k-\ell}(a_{\ell+1} \tensor \cdots \tensor a_k) + \\
  1123 \label{eq:bdy-tm-k-2}   &          +  \sum_{\ell=1}^{k-1} \tm_{\ell}(a_1 \tensor \cdots \tensor a_{\ell}) \tensor \tm_{k-\ell}(a_{\ell+1} \tensor \cdots \tensor a_k) + \\
  1124 \label{eq:bdy-tm-k-3}   &          +  \sum_{\ell=1}^{k-1} \sum_{\ell'=0}^{l-1} \tm_{\ell}(a_1 \tensor \cdots \tensor m_{k-\ell + 1}(a_{\ell' + 1} \tensor \cdots \tensor a_{\ell' + k - \ell + 1}) \tensor \cdots \tensor a_k)
  1124 \label{eq:bdy-tm-k-3}   &          +  \sum_{\ell=1}^{k-1} \sum_{\ell'=0}^{l-1} \tm_{\ell}(a_1 \tensor \cdots \tensor m_{k-\ell + 1}(a_{\ell' + 1} \tensor \cdots \tensor a_{\ell' + k - \ell + 1}) \tensor \cdots \tensor a_k)
  1125 \end{align}
  1125 \end{align}
  1126 The first set of terms in $\bdy(\tm_k(a_1 \tensor \cdots \tensor a_k))$ just have $\bdy$ acting on each argument $a_i$.
  1126 The first set of terms in $\bdy(\tm_k(a_1 \tensor \cdots \tensor a_k))$ just have $\bdy$ acting on each argument $a_i$.
  1127 The terms appearing in \eqref{eq:bdy-tm-k-2} and \eqref{eq:bdy-tm-k-3} are indexed by trees with $2$ vertices on $k+1$ leaves.
  1127 The terms appearing in \eqref{eq:bdy-tm-k-2} and \eqref{eq:bdy-tm-k-3} are indexed by trees with $2$ vertices on $k+1$ leaves.
  1159 \end{equation*}
  1159 \end{equation*}
  1160 \caption{The terms of $\bdy(\tm_k(a_1 \tensor \cdots \tensor a_k))$ correspond to the faces of the $k-1$ dimensional associahedron.}
  1160 \caption{The terms of $\bdy(\tm_k(a_1 \tensor \cdots \tensor a_k))$ correspond to the faces of the $k-1$ dimensional associahedron.}
  1161 \label{fig:A4-terms}
  1161 \label{fig:A4-terms}
  1162 \end{figure}
  1162 \end{figure}
  1163 
  1163 
       
  1164 \begin{lem}
       
  1165 This definition actually results in a chain complex, that is $\bdy^2 = 0$.
       
  1166 \end{lem}
       
  1167 \begin{proof}
       
  1168 \newcommand{\T}{\text{---}}
       
  1169 \newcommand{\ssum}[1]{{\sum}^{(#1)}}
       
  1170 For the duration of this proof, inside a summation over variables $l_1, \ldots, l_m$, an expression with $m$ dashes will be interpreted
       
  1171 by replacing each dash with contiguous factors from $a_1 \tensor \cdots \tensor a_k$, so the first dash takes the first $l_1$ factors, the second
       
  1172 takes the next $l_2$ factors, and so on. Further, we'll write $\ssum{m}$ for $\sum_{\sum_{i=1}^m l_i = k}$.
       
  1173 In this notation, the formula for the differential becomes
       
  1174 \begin{align}
       
  1175 \notag
       
  1176 \bdy \tm(\T) & = \ssum{2} \tm(\T) \tensor \tm(\T) \times \sigma_{0;l_1,l_2} + \ssum{3} \tm(\T \tensor m(\T) \tensor \T) \times \tau_{0;l_1,l_2,l_3} \\
       
  1177 \intertext{and we calculate}
       
  1178 \notag
       
  1179 \bdy^2 \tm(\T) & = \ssum{2} (\bdy \tm(\T)) \tensor \tm(\T) \times \sigma_{0;l_1,l_2} \\
       
  1180 \notag         & \qquad + \ssum{2} \tm(\T) \tensor (\bdy \tm(\T)) \times \sigma_{0;l_1,l_2} \\
       
  1181 \notag         & \qquad + \ssum{3} \bdy \tm(\T \tensor m(\T) \tensor \T) \times \tau_{0;l_1,l_2,l_3} \\
       
  1182 \label{eq:d21} & = \ssum{3} \tm(\T) \tensor \tm(\T) \tensor \tm(\T) \times \sigma_{0;l_1+l_2,l_3} \sigma_{0;l_1,l_2} \\
       
  1183 \label{eq:d22} & \qquad + \ssum{4} \tm(\T \tensor m(\T) \tensor \T) \tensor \tm(\T) \times \sigma_{0;l_1+l_2+l_3,l_4} \tau_{0;l_1,l_2,l_3} \\
       
  1184 \label{eq:d23} & \qquad + \ssum{3} \tm(\T) \tensor \tm(\T) \tensor \tm(\T) \times \sigma_{0;l_1,l_2+l_3} \sigma_{l_1;l_2,l_3} \\
       
  1185 \label{eq:d24} & \qquad + \ssum{4} \tm(\T) \tensor \tm(\T \tensor m(\T) \tensor \T) \times \sigma_{0;l_1,l_2+l_3+l_4} \tau_{l_1;l_2,l_3,l_4} \\
       
  1186 \label{eq:d25} & \qquad + \ssum{4} \tm(\T \tensor m(\T) \tensor \T) \tensor \tm(\T) \times \tau_{0;l_1,l_2,l_3+l_4} ??? \\
       
  1187 \label{eq:d26} & \qquad + \ssum{4} \tm(\T) \tensor \tm(\T \tensor m(\T) \tensor \T) \times \tau_{0;l_1+l_2,l_3,l_4} \sigma_{0;l_1,l_2} \\
       
  1188 \label{eq:d27} & \qquad + \ssum{5} \tm(\T \tensor m(\T) \tensor \T \tensor m(\T) \tensor \T) \times \tau_{0;l_1+l_2+l_3,l_4,l_5} \tau_{0;l_1,l_2,l_3}  \\
       
  1189 \label{eq:d28} & \qquad + \ssum{5} \tm(\T \tensor m(\T \tensor m(\T) \tensor \T) \tensor \T) \times \tau_{0;l_1,l_2+l_3+l_4,l_5} ??? \\
       
  1190 \label{eq:d29} & \qquad + \ssum{5} \tm(\T \tensor m(\T) \tensor \T \tensor m(\T) \tensor \T) \times \tau_{0;l_1,l_2,l_3+l_4+l_5} ???
       
  1191 \end{align}
       
  1192 Now, we see the the expressions on the right hand side of line \eqref{eq:d21} and those on \eqref{eq:d23} cancel. Similarly, line \eqref{eq:d22} cancels
       
  1193 with \eqref{eq:d25}, \eqref{eq:d24} with \eqref{eq:d26}, and \eqref{eq:d27} with \eqref{eq:d29}. Finally, we need to see that \eqref{eq:d28} gives $0$,
       
  1194 by the usual relations between the $m_k$ in an $A_\infty$ algebra.
       
  1195 \end{proof}
       
  1196 
  1164 \nn{Need to let the input $n$-category $C$ be a graded thing (e.g. DG
  1197 \nn{Need to let the input $n$-category $C$ be a graded thing (e.g. DG
  1165 $n$-category or $A_\infty$ $n$-category). DG $n$-category case is pretty
  1198 $n$-category or $A_\infty$ $n$-category). DG $n$-category case is pretty
  1166 easy, I think, so maybe it should be done earlier??}
  1199 easy, I think, so maybe it should be done earlier??}
  1167 
  1200 
  1168 \bigskip
  1201 \bigskip