talks/20100625-StonyBrook/categorification.tex
changeset 378 e5867a64cae5
parent 222 217b6a870532
child 379 6caac26b5c29
equal deleted inserted replaced
377:43033c337dfa 378:e5867a64cae5
       
     1 % use options
       
     2 %  '[beamer]' for a digital projector
       
     3 %  '[trans]' for an overhead projector
       
     4 %  '[handout]' for 4-up printed notes
       
     5 \documentclass[beamer, compress]{beamer}
       
     6 
       
     7 % change talk_preamble if you want to modify the slide theme, colours, and settings for trans and handout modes.
       
     8 \newcommand{\pathtotrunk}{../../}
       
     9 \input{\pathtotrunk talks/talk_preamble.tex}
       
    10 
       
    11 %\setbeameroption{previous slide on second screen=right}
       
    12 
       
    13 \author[Scott Morrison]{Scott Morrison \\ \texttt{http://tqft.net/} \\ joint work with Kevin Walker}
       
    14 \institute{UC Berkeley / Miller Institute for Basic Research}
       
    15 \title{Blob homology, part $\mathbb{I}$}
       
    16 \date{Homotopy Theory and Higher Algebraic Structures, UC Riverside, November 10 2009 \\ \begin{description}\item[slides, part $\mathbb{I}$:]\url{http://tqft.net/UCR-blobs1} \item[slides, part $\mathbb{II}$:]\url{http://tqft.net/UCR-blobs2} \item[draft:]\url{http://tqft.net/blobs}\end{description}}
       
    17 
       
    18 \begin{document}
       
    19 
       
    20 \frame{\titlepage}
       
    21 
       
    22 \beamertemplatetransparentcovered 
       
    23 
       
    24 \mode<beamer>{\setbeamercolor{block title}{bg=green!40!black}}
       
    25 
       
    26 \beamersetuncovermixins 
       
    27 {\opaqueness<1->{60}} 
       
    28 {} 
       
    29 
       
    30 
       
    31 
       
    32 \section{Overview}
       
    33 
       
    34    \begin{frame}<beamer>
       
    35        \frametitle{Blob homology}
       
    36        \begin{quote}
       
    37       ... homotopical topology and TQFT have grown so close that I have started thinking that they are turning into the language of new foundations. 
       
    38         \end{quote}
       
    39         \flushright{--- \href{http://www.ams.org/notices/200910/rtx091001268p.pdf}{Yuri Manin, September 2008}}
       
    40       \tableofcontents
       
    41 \end{frame}
       
    42 
       
    43 \begin{frame}{What is \emph{blob homology}?}
       
    44 \begin{block}{}
       
    45 The blob complex takes an $n$-manifold $\cM$ and an `$n$-category with strong duality' $\cC$ and produces a chain complex, $\bc_*(\cM; \cC)$.
       
    46 \end{block}
       
    47 \tikzstyle{description}=[gray, font=\tiny, text centered, text width=2cm]
       
    48 \begin{tikzpicture}[]
       
    49 \setbeamercovered{%
       
    50  transparent=5,
       
    51 % still covered={\opaqueness<1>{15}\opaqueness<2>{10}\opaqueness<3>{5}\opaqueness<4->{2}},
       
    52  again covered={\opaqueness<1->{50}}
       
    53 }
       
    54 
       
    55 \node[red] (blobs) at (0,0) {$H(\bc_*(\cM; \cC))$};
       
    56 \uncover<1>{
       
    57 \node[blue] (skein) at (4,0) {$\cA(\cM; \cC)$};
       
    58 \node[below=5pt, description] (skein-label) at (skein) {(the usual TQFT Hilbert space)};
       
    59 \path[->](blobs) edge node[above] {$*= 0$} (skein);
       
    60 }
       
    61 
       
    62 \uncover<2>{
       
    63   \node[blue] (hoch) at (0,3) {$HH_*(\cC)$};
       
    64   \node[right=20pt, description] (hoch-label) at (hoch) {(the Hochschild homology)};
       
    65   \path[->](blobs) edge node[right] {$\cM = S^1$} (hoch);
       
    66 }
       
    67 
       
    68 \uncover<3>{
       
    69   \node[blue] (comm) at (-2.4, -1.8) {$H_*(\Delta^\infty(\cM), k)$};
       
    70   \node[description, below=5pt] (comm-label) at (comm) {(singular homology of the infinite configuration space)};
       
    71   \path[->](blobs) edge node[right=5pt] {$\cC = k[t]$} (comm);
       
    72 }
       
    73 
       
    74 \end{tikzpicture}
       
    75 \end{frame}
       
    76 
       
    77 \begin{frame}{$n$-categories}
       
    78 \begin{block}{Defining $n$-categories is fraught with difficulties}
       
    79 I'm not going to go into details; I'll draw $2$-dimensional pictures, and rely on your intuition for pivotal $2$-categories.
       
    80 \end{block}
       
    81 \begin{block}{}
       
    82 Kevin's talk (part $\mathbb{II}$) will explain the notions of `topological $n$-categories' and `$A_\infty$ $n$-categories'.
       
    83 \end{block}
       
    84 
       
    85 \begin{block}{}
       
    86 \begin{itemize}
       
    87 \item
       
    88 Defining $n$-categories: a choice of `shape' for morphisms.
       
    89 \item
       
    90 We allow all shapes! A vector space for every ball.
       
    91 \item
       
    92 `Strong duality' is integral in our definition.
       
    93 \end{itemize}
       
    94 \end{block}
       
    95 \end{frame}
       
    96 
       
    97 \newcommand{\roundframe}[1]{\begin{tikzpicture}[baseline=-2pt]\node[rectangle,inner sep=1pt,rounded corners,fill=white] {#1};\end{tikzpicture}}
       
    98 
       
    99 \section{Definition}
       
   100 \begin{frame}{Fields and pasting diagrams}
       
   101 \begin{block}{Pasting diagrams}
       
   102 Fix an $n$-category with strong duality $\cC$. A \emph{field} on $\cM$ is a pasting diagram drawn on $\cM$, with cells labelled by morphisms from $\cC$.
       
   103 \end{block}
       
   104 \begin{example}[$\cC = \text{TL}_d$ the Temperley-Lieb category]
       
   105 $$\roundframe{\mathfig{0.35}{definition/example-pasting-diagram}} \in \cF^{\text{TL}_d}\left(T^2\right)$$
       
   106 \end{example}
       
   107 \begin{block}{}
       
   108 Given a pasting diagram on a ball, we can evaluate it to a morphism. We call the kernel the \emph{null fields}.
       
   109 \vspace{-3mm}
       
   110 $$\text{ev}\Bigg(\roundframe{\mathfig{0.12}{definition/evaluation1}} - \frac{1}{d}\roundframe{\mathfig{0.12}{definition/evaluation2}}\Bigg) = 0$$
       
   111 \end{block}
       
   112 \end{frame}
       
   113 
       
   114 \begin{frame}{Background: TQFT invariants}
       
   115 \begin{defn}
       
   116 A decapitated $n+1$-dimensional TQFT associates a vector space $\cA(\cM)$ to each $n$-manifold $\cM$.
       
   117 \end{defn}
       
   118 (`decapitated': no numerical invariants of $n+1$-manifolds.)
       
   119 
       
   120 \begin{block}{}
       
   121 If the manifold has boundary, we get a category. Objects are boundary data, $\Hom{\cA(\cM)}{x}{y} = \cA(\cM; x,y)$.
       
   122 \end{block}
       
   123 
       
   124 \begin{block}{}
       
   125 We want to extend `all the way down'. The $k$-category associated to the $n-k$-manifold $\cY$ is $\cA(\cY \times B^k)$.
       
   126 \end{block}
       
   127 
       
   128 \begin{defn}
       
   129 Given an $n$-category $\cC$, the associated TQFT is 
       
   130 \vspace{-3mm}
       
   131 $$\cA(\cM) = \cF(M) / \ker{ev},$$
       
   132 
       
   133 \vspace{-3mm}
       
   134 fields modulo fields which evaluate to zero inside some ball.
       
   135 \end{defn}
       
   136 \end{frame}
       
   137 
       
   138 \begin{frame}{\emph{Definition} of the blob complex, $k=0,1$}
       
   139 \begin{block}{Motivation}
       
   140 A \emph{local} construction, such that when $\cM$ is a ball, $\bc_*(\cM; \cC)$ is a resolution of $\cA(\cM,; \cC)$.
       
   141 \end{block}
       
   142 
       
   143 \begin{block}{}
       
   144 \center
       
   145 $\bc_0(\cM; \cC) = \cF(\cM)$, arbitrary pasting diagrams on $\cM$.
       
   146 \end{block}
       
   147 
       
   148 \begin{block}{}
       
   149 \vspace{-1mm}
       
   150 $$\bc_1(\cM; \cC) = \Complex\setcr{(B, u, r)}{\begin{array}{c}\text{$B$ an embedded ball}\\\text{$u \in \cF(B)$ in the kernel}\\ r \in \cF(\cM \setminus B)\end{array}}.$$
       
   151 \end{block}
       
   152 \vspace{-3.5mm}
       
   153 $$\mathfig{.5}{definition/single-blob}$$
       
   154 \vspace{-3mm}
       
   155 \begin{block}{}
       
   156 \vspace{-6mm}
       
   157 \begin{align*}
       
   158 d_1 : (B, u, r) & \mapsto u \circ r & \bc_0 / \im(d_1) \iso A(\cM; \cC)
       
   159 \end{align*}
       
   160 \end{block}
       
   161 \end{frame}
       
   162 
       
   163 \begin{frame}{Definition, $k=2$}
       
   164 \begin{block}{}
       
   165 \vspace{-1mm}
       
   166 $$\bc_2 = \bc_2^{\text{disjoint}} \oplus \bc_2^{\text{nested}}$$
       
   167 \end{block}
       
   168 \begin{block}{}
       
   169 \vspace{-5mm}
       
   170 \begin{align*}
       
   171 \bc_2^{\text{disjoint}} & =  \Complex\setcl{\roundframe{\mathfig{0.5}{definition/disjoint-blobs}}}{\text{ev}_{B_i}(u_i) = 0}
       
   172 \end{align*}
       
   173 \vspace{-4mm}
       
   174 $$d_2 : (B_1, B_2, u_1, u_2, r) \mapsto (B_2, u_2, r \circ u_1) - (B_1, u_1, r \circ u_2)$$
       
   175 \end{block}
       
   176 \begin{block}{}
       
   177 \vspace{-5mm}
       
   178 \begin{align*}
       
   179 \bc_2^{\text{nested}} & = \Complex\setcl{\roundframe{\mathfig{0.5}{definition/nested-blobs}}}{\text{ev}_{B_1}(u)=0}
       
   180 \end{align*}
       
   181 \vspace{-4mm}
       
   182 $$d_2 : (B_1, B_2, u, r', r) \mapsto (B_2, u \circ r', r) - (B_1, u, r \circ r')$$
       
   183 \end{block}
       
   184 \end{frame}
       
   185 
       
   186 \begin{frame}{Definition, general case}
       
   187 \begin{block}{}
       
   188 $$\bc_k = \Complex\set{\roundframe{\mathfig{0.7}{definition/k-blobs}}}$$
       
   189 $k$ blobs, properly nested or disjoint, with ``innermost'' blobs labelled by pasting diagrams that evaluate to zero.
       
   190 \end{block}
       
   191 \begin{block}{}
       
   192 \vspace{-2mm}
       
   193 $$d_k : \bc_k \to \bc_{k-1} = {\textstyle \sum_i} (-1)^i (\text{erase blob $i$})$$
       
   194 \end{block}
       
   195 \end{frame}
       
   196 
       
   197 \section{Properties}
       
   198 \begin{frame}{Hochschild homology}
       
   199 \begin{block}{TQFT on $S^1$ is `coinvariants'}
       
   200 \vspace{-3mm}
       
   201 $$\cA(S^1, A) = \Complex\set{\roundframe{\mathfig{0.1}{hochschild/m-a-b}}}\scalebox{2}{$/$}\set{\roundframe{\mathfig{0.065}{hochschild/ma}} - \roundframe{\mathfig{0.12}{hochschild/m-a}}} = A/(ab-ba)$$
       
   202 \end{block}
       
   203 \begin{block}{}
       
   204 The Hochschild complex is `coinvariants of the bar resolution'
       
   205 \vspace{-2mm}
       
   206 $$ \cdots \to A \tensor A \tensor A \to A \tensor A \xrightarrow{m \tensor a \mapsto ma-am} A$$
       
   207 \end{block}
       
   208 \begin{thm}[$ \HC_*(A) \iso \bc_*(S^1; A)$]
       
   209 $$m \tensor a \mapsto
       
   210 \roundframe{\mathfig{0.35}{hochschild/1-chains}}
       
   211 $$
       
   212 \vspace{-5mm}
       
   213 \begin{align*}
       
   214 u_1 & = \mathfig{0.05}{hochschild/u_1-1} - \mathfig{0.05}{hochschild/u_1-2} & u_2  &= \mathfig{0.05}{hochschild/u_2-1} - \mathfig{0.05}{hochschild/u_2-2} 
       
   215 \end{align*}
       
   216 \end{thm}
       
   217 \end{frame}
       
   218 
       
   219 \begin{frame}{An action of $\CH{\cM}$}
       
   220 \begin{thm}
       
   221 There's a chain map
       
   222 $$\CH{\cM} \tensor \bc_*(\cM) \to \bc_*(\cM).$$
       
   223 which is associative up to homotopy, and compatible with gluing.
       
   224 \end{thm}
       
   225 \begin{block}{}
       
   226 Taking $H_0$, this is the mapping class group acting on a TQFT skein module.
       
   227 \end{block}
       
   228 \end{frame}
       
   229 
       
   230 \begin{frame}{Higher Deligne conjecture}
       
   231 \begin{block}{Deligne conjecture}
       
   232 Chains on the little discs operad acts on Hochschild cohomology.
       
   233 \end{block}
       
   234 
       
   235 \begin{block}{}
       
   236 Call $\Hom{A_\infty}{\bc_*(\cM)}{\bc_*(\cM)}$ `blob cochains on $\cM$'.
       
   237 \end{block}
       
   238 
       
   239 \begin{block}{Theorem* (Higher Deligne conjecture)}
       
   240 \scalebox{0.96}{Chains on the $n$-dimensional fat graph operad acts on blob cochains.}
       
   241 \vspace{-3mm}
       
   242 $$\mathfig{.85}{deligne/manifolds}$$
       
   243 \end{block}
       
   244 \end{frame}
       
   245 
       
   246 \begin{frame}{Gluing}
       
   247 \begin{block}{$\bc_*(Y \times [0,1])$ is naturally an $A_\infty$ category}
       
   248 \begin{itemize}
       
   249 \item[$m_2$:] gluing $[0,1] \simeq [0,1] \cup [0,1]$
       
   250 \item[$m_k$:] reparametrising $[0,1]$
       
   251 \end{itemize}
       
   252 \end{block}
       
   253 \begin{block}{}
       
   254 If $Y \subset \bdy X$ then $\bc_*(X)$ is an $A_\infty$ module over $\bc_*(Y)$.
       
   255 \end{block}
       
   256 \begin{thm}[Gluing formula]
       
   257 When $Y \sqcup Y^{\text{op}} \subset \bdy X$,
       
   258 \vspace{-5mm}
       
   259 \[
       
   260 	\bc_*(X \bigcup_Y \selfarrow) \iso \bc_*(X) \bigotimes_{\bc_*(Y)}^{A_\infty} \selfarrow.
       
   261 \]
       
   262 \end{thm}
       
   263 In principle, we can compute blob homology from a handle decomposition, by iterated Hochschild homology.
       
   264 \end{frame}
       
   265 \end{document}
       
   266 % ----------------------------------------------------------------
       
   267