text/appendixes/famodiff.tex
changeset 273 ec9458975d92
parent 272 a7a23eeb5d65
child 274 8e021128cf8f
equal deleted inserted replaced
272:a7a23eeb5d65 273:ec9458975d92
    75 Each $i$-handle $C$ of $\jj$ has an $i$-dimensional tangential coordinate and,
    75 Each $i$-handle $C$ of $\jj$ has an $i$-dimensional tangential coordinate and,
    76 more importantly for our purposes, a $k{-}i$-dimensional normal coordinate.
    76 more importantly for our purposes, a $k{-}i$-dimensional normal coordinate.
    77 We will typically use the same notation for $i$-cells of $L$ and the 
    77 We will typically use the same notation for $i$-cells of $L$ and the 
    78 corresponding $i$-handles of $\jj$.
    78 corresponding $i$-handles of $\jj$.
    79 
    79 
    80 For each (top-dimensional) $k$-cell $C$ of each $K_\alpha$, choose a point $p_c \in C \sub P$.
    80 For each (top-dimensional) $k$-cell $C$ of each $K_\alpha$, choose a point $p(C) \in C \sub P$.
    81 Let $D$ be a $k$-handle of $\jj$.
    81 Let $D$ be a $k$-handle of $\jj$.
    82 To $D$ we associate the tuple $(c_\alpha)$ of $k$-cells of the $K_\alpha$'s
    82 For each $\alpha$ let $C(D, \alpha)$ be the $k$-cell of $K_\alpha$ which contains $D$
    83 which contain $D$, and also the corresponding tuple $(p_{c_\alpha})$ of points in $P$.
    83 and let $p(D, \alpha) = p(C(D, \alpha))$.
    84 
    84 
    85 For $p \in D$ we define
    85 For $p \in D$ we define
    86 \eq{
    86 \eq{
    87     u(t, p, x) = (1-t)p + t \sum_\alpha r_\alpha(x) p_{c_\alpha} .
    87     u(t, p, x) = (1-t)p + t \sum_\alpha r_\alpha(x) p(D, \alpha) .
    88 }
    88 }
    89 (Recall that $P$ is a convex linear polyhedron, so the weighted average of points of $P$
    89 (Recall that $P$ is a convex linear polyhedron, so the weighted average of points of $P$
    90 makes sense.)
    90 makes sense.)
    91 
    91 
    92 So far we have defined $u(t, p, x)$ when $p$ lies in a $k$-handle of $\jj$.
    92 Thus far we have defined $u(t, p, x)$ when $p$ lies in a $k$-handle of $\jj$.
    93 For handles of $\jj$ of index less than $k$, we will define $u$ to
    93 We will now extend $u$ inductively to handles of index less than $k$.
    94 interpolate between the values on $k$-handles defined above.
    94 
       
    95 Let $E$ be a $k{-}1$-handle.
       
    96 $E$ is homeomorphic to $B^{k-1}\times [0,1]$, and meets
       
    97 the $k$-handles at $B^{k-1}\times\{0\}$ and $B^{k-1}\times\{1\}$.
       
    98 Let $\eta : E \to [0,1]$, $\eta(x, s) = s$ be the normal coordinate
       
    99 of $E$.
       
   100 Let $D_0$ and $D_1$ be the two $k$-handles of $\jj$ adjacent to $E$.
       
   101 There is at most one index $\beta$ such that $C(D_0, \beta) \ne C(D_1, \beta)$.
       
   102 (If there is no such index $\beta$, choose $\beta$
       
   103 arbitrarily.)
       
   104 For $p \in E$, define
       
   105 \eq{
       
   106     u(t, p, x) = (1-t)p + t \left( \sum_{\alpha \ne \beta} r_\alpha(x) p(D_0, \alpha)
       
   107             + r_\beta(x) (\eta(p) p(D_0, p) + (1-\eta(p)) p(D_1, p)) \right) .
       
   108 }
    95 
   109 
    96 \nn{*** resume revising here ***}
   110 \nn{*** resume revising here ***}
    97 
       
    98 If $p$ lies in a $k{-}1$-handle $E$, let $\eta : E \to [0,1]$ be the normal coordinate
       
    99 of $E$.
       
   100 In particular, $\eta$ is equal to 0 or 1 only at the intersection of $E$
       
   101 with a $k$-handle.
       
   102 Let $\beta$ be the index of the $K_\beta$ containing the $k{-}1$-cell
       
   103 corresponding to $E$.
       
   104 Let $q_0, q_1 \in P$ be the points associated to the two $k$-cells of $K_\beta$
       
   105 adjacent to the $k{-}1$-cell corresponding to $E$.
       
   106 For $p \in E$, define
       
   107 \eq{
       
   108     u(t, p, x) = (1-t)p + t \left( \sum_{\alpha \ne \beta} r_\alpha(x) p_{c_\alpha}
       
   109             + r_\beta(x) (\eta(p) q_1 + (1-\eta(p)) q_0) \right) .
       
   110 }
       
   111 
   111 
   112 In general, for $E$ a $k{-}j$-handle, there is a normal coordinate
   112 In general, for $E$ a $k{-}j$-handle, there is a normal coordinate
   113 $\eta: E \to R$, where $R$ is some $j$-dimensional polyhedron.
   113 $\eta: E \to R$, where $R$ is some $j$-dimensional polyhedron.
   114 The vertices of $R$ are associated to $k$-cells of the $K_\alpha$, and thence to points of $P$.
   114 The vertices of $R$ are associated to $k$-cells of the $K_\alpha$, and thence to points of $P$.
   115 If we triangulate $R$ (without introducing new vertices), we can linearly extend
   115 If we triangulate $R$ (without introducing new vertices), we can linearly extend