text/ncat.tex
changeset 810 eec1fd45225a
parent 807 c2d1620c56df
parent 809 2039bcccfa99
child 811 858b80dfa05c
equal deleted inserted replaced
807:c2d1620c56df 810:eec1fd45225a
   487 	\draw[green!50!brown] (\x,-2) -- (\x,2);
   487 	\draw[green!50!brown] (\x,-2) -- (\x,2);
   488 }
   488 }
   489 \end{scope}
   489 \end{scope}
   490 \end{tikzpicture}
   490 \end{tikzpicture}
   491 $$
   491 $$
   492 \caption{Five examples of unions of pinched products}\label{pinched_prod_unions}
   492 \caption{Six examples of unions of pinched products}\label{pinched_prod_unions}
   493 \end{figure}
   493 \end{figure}
   494 
   494 
   495 Note that $\bd X$ has a (possibly trivial) subdivision according to 
   495 Note that $\bd X$ has a (possibly trivial) subdivision according to 
   496 the dimension of $\pi\inv(x)$, $x\in \bd X$.
   496 the dimension of $\pi\inv(x)$, $x\in \bd X$.
   497 Let $\cC(X)\trans{}$ denote the morphisms which are splittable along this subdivision.
   497 Let $\cC(X)\trans{}$ denote the morphisms which are splittable along this subdivision.
  1406 Then there exist
  1406 Then there exist
  1407 \begin{itemize}
  1407 \begin{itemize}
  1408 \item decompositions $x = x_0, x_1, \ldots , x_{k-1}, x_k = x$ and $v_1,\ldots, v_k$ of $W$;
  1408 \item decompositions $x = x_0, x_1, \ldots , x_{k-1}, x_k = x$ and $v_1,\ldots, v_k$ of $W$;
  1409 \item anti-refinements $v_i\to x_i$ and $v_i\to x_{i-1}$; and
  1409 \item anti-refinements $v_i\to x_i$ and $v_i\to x_{i-1}$; and
  1410 \item elements $a_i\in \psi(x_i)$ and $b_i\in \psi(v_i)$, with $a_0 = a$ and $a_k = \hat{a}$, 
  1410 \item elements $a_i\in \psi(x_i)$ and $b_i\in \psi(v_i)$, with $a_0 = a$ and $a_k = \hat{a}$, 
  1411 such that $b_i$ and $b_{i+1}$both map to (glue up to) $a_i$.
  1411 such that $b_i$ and $b_{i+1}$ both map to (glue up to) $a_i$.
  1412 \end{itemize}
  1412 \end{itemize}
  1413 In other words, we have a zig-zag of equivalences starting at $a$ and ending at $\hat{a}$.
  1413 In other words, we have a zig-zag of equivalences starting at $a$ and ending at $\hat{a}$.
  1414 The idea of the proof is to produce a similar zig-zag where everything antirefines to the same
  1414 The idea of the proof is to produce a similar zig-zag where everything antirefines to the same
  1415 disjoint union of balls, and then invoke Axiom \ref{nca-assoc} which ensures associativity.
  1415 disjoint union of balls, and then invoke Axiom \ref{nca-assoc} which ensures associativity.
  1416 
  1416