text/ncat.tex
changeset 258 fd5d1647f4f3
parent 236 3feb6e24a518
child 259 db18f7c32abe
equal deleted inserted replaced
257:ae5a542c958e 258:fd5d1647f4f3
  1063 has the structure of an $n{-}k$-category.
  1063 has the structure of an $n{-}k$-category.
  1064 
  1064 
  1065 \medskip
  1065 \medskip
  1066 
  1066 
  1067 
  1067 
  1068 %\subsection{Tensor products}
       
  1069 
       
  1070 We will use a simple special case of the above 
  1068 We will use a simple special case of the above 
  1071 construction to define tensor products 
  1069 construction to define tensor products 
  1072 of modules.
  1070 of modules.
  1073 Let $\cM_1$ and $\cM_2$ be modules for an $n$-category $\cC$.
  1071 Let $\cM_1$ and $\cM_2$ be modules for an $n$-category $\cC$.
  1074 (If $k=1$ and manifolds are oriented, then one should be 
  1072 (If $k=1$ and manifolds are oriented, then one should be 
  1082 This of course depends (functorially)
  1080 This of course depends (functorially)
  1083 on the choice of 1-ball $J$.
  1081 on the choice of 1-ball $J$.
  1084 
  1082 
  1085 We will define a more general self tensor product (categorified coend) below.
  1083 We will define a more general self tensor product (categorified coend) below.
  1086 
  1084 
  1087 
       
  1088 
       
  1089 
       
  1090 %\nn{what about self tensor products /coends ?}
  1085 %\nn{what about self tensor products /coends ?}
  1091 
  1086 
  1092 \nn{maybe ``tensor product" is not the best name?}
  1087 \nn{maybe ``tensor product" is not the best name?}
  1093 
  1088 
  1094 %\nn{start with (less general) tensor products; maybe change this later}
  1089 %\nn{start with (less general) tensor products; maybe change this later}
       
  1090 
       
  1091 
       
  1092 
       
  1093 
       
  1094 \subsection{Morphisms of $A_\infty$ 1-cat modules}
       
  1095 
       
  1096 In order to state and prove our version of the higher dimensional Deligne conjecture
       
  1097 (Section \ref{sec:deligne}),
       
  1098 we need to define morphisms of $A_\infty$ 1-cat modules and establish
       
  1099 some elementary properties of these.
       
  1100 
       
  1101 To motivate the definitions which follow, consider algebras $A$ and $B$, right/bi/left modules
       
  1102 $X_B$, $_BY_A$ and $Z_A$, and the familiar adjunction
       
  1103 \begin{eqnarray*}
       
  1104 	\hom_A(X_B\ot {_BY_A} \to Z_A) &\cong& \hom_B(X_B \to \hom_A( {_BY_A} \to Z_A)) \\
       
  1105 	f &\mapsto& [x \mapsto f(x\ot -)] \\
       
  1106 	{}[x\ot y \mapsto g(x)(y)] & \leftarrowtail & g .
       
  1107 \end{eqnarray*}
       
  1108 \nn{how to do a left-pointing ``$\mapsto$"?}
       
  1109 If $A$ and $Z_A$ are both the ground field $\k$, this simplifies to
       
  1110 \[
       
  1111 	(X_B\ot {_BY})^* \cong  \hom_B(X_B \to (_BY)^*) .
       
  1112 \]
       
  1113 We will establish the analogous isomorphism for a topological $A_\infty$ 1-cat $\cC$
       
  1114 and modules $\cM_\cC$ and $_\cC\cN$,
       
  1115 \[
       
  1116 	(\cM_\cC\ot {_\cC\cN})^* \cong  \hom_\cC(\cM_\cC \to (_\cC\cN)^*) .
       
  1117 \]
       
  1118 
       
  1119 We must now define the things appearing in the above equation.
       
  1120 
       
  1121 In the previous subsection we defined a tensor product of $A_\infty$ $n$-cat modules
       
  1122 for general $n$.
       
  1123 For $n=1$ this definition is a homotopy colimit indexed by subdivisions of a fixed interval $J$
       
  1124 and their gluings (antirefinements).
       
  1125 (The tensor product will depend (functorially) on the choice of $J$.)
       
  1126 To a subdivision 
       
  1127 \[
       
  1128 	J = I_1\cup \cdots\cup I_m
       
  1129 \]
       
  1130 we associate the chain complex
       
  1131 \[
       
  1132 	\cM(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{m-1})\ot\cN(I_m) .
       
  1133 \]
       
  1134 (If $D$ denotes the subdivision of $J$, then we denote this complex by $\psi(D)$.)
       
  1135 To each antirefinement we associate a chain map using the composition law of $\cC$ and the 
       
  1136 module actions of $\cC$ on $\cM$ and $\cN$.
       
  1137 \def\olD{{\overline D}}
       
  1138 The underlying graded vector space of the homotopy colimit is
       
  1139 \[
       
  1140 	\bigoplus_l \bigoplus_{\olD} \psi(D_0)[l] ,
       
  1141 \]
       
  1142 where $l$ runs through the natural numbers, $\olD = (D_0\to D_1\to\cdots\to D_l)$
       
  1143 runs through chains of antirefinements, and $[l]$ denotes a grading shift.
       
  1144 
       
  1145 \nn{...}
       
  1146 
       
  1147 
       
  1148 
       
  1149 
       
  1150 
       
  1151 
  1095 
  1152 
  1096 
  1153 
  1097 
  1154 
  1098 \subsection{The $n{+}1$-category of sphere modules}
  1155 \subsection{The $n{+}1$-category of sphere modules}
  1099 \label{ssec:spherecat}
  1156 \label{ssec:spherecat}