text/ncat.tex
changeset 286 ff867bfc8e9c
parent 279 cb16992373be
child 288 6c1b3c954c7e
equal deleted inserted replaced
282:7afacaa87bdb 286:ff867bfc8e9c
     1 %!TEX root = ../blob1.tex
     1 %!TEX root = ../blob1.tex
     2 
     2 
     3 \def\xxpar#1#2{\smallskip\noindent{\bf #1} {\it #2} \smallskip}
     3 \def\xxpar#1#2{\smallskip\noindent{\bf #1} {\it #2} \smallskip}
     4 \def\mmpar#1#2#3{\smallskip\noindent{\bf #1} (#2). {\it #3} \smallskip}
     4 \def\mmpar#1#2#3{\smallskip\noindent{\bf #1} (#2). {\it #3} \smallskip}
     5 
     5 
     6 \section{$n$-categories}
     6 \section{Definitions of $n$-categories}
     7 \label{sec:ncats}
     7 \label{sec:ncats}
     8 
     8 
     9 \subsection{Definition of $n$-categories}
     9 \subsection{Definition of $n$-categories}
    10 
    10 
    11 Before proceeding, we need more appropriate definitions of $n$-categories, 
    11 Before proceeding, we need more appropriate definitions of $n$-categories, 
  1023 %Let $\cC$ be an [$A_\infty$] $n$-category, let $W$ be a $k$-manifold ($k\le n$),
  1023 %Let $\cC$ be an [$A_\infty$] $n$-category, let $W$ be a $k$-manifold ($k\le n$),
  1024 %and let $\cN = (\cN_i)$ be an assignment of a $\cC$ module $\cN_i$ to each boundary 
  1024 %and let $\cN = (\cN_i)$ be an assignment of a $\cC$ module $\cN_i$ to each boundary 
  1025 %component $\bd_i W$ of $W$.
  1025 %component $\bd_i W$ of $W$.
  1026 %(More generally, each $\cN_i$ could label some codimension zero submanifold of $\bd W$.)
  1026 %(More generally, each $\cN_i$ could label some codimension zero submanifold of $\bd W$.)
  1027 
  1027 
  1028 We will define a set $\cC(W, \cN)$ using a colimit construction similar to above.
  1028 We will define a set $\cC(W, \cN)$ using a colimit construction similar to the one appearing in \S \ref{ss:ncat_fields} above.
  1029 \nn{give ref}
  1029 (If $k = n$ and our $n$-categories are enriched, then
  1030 (If $k = n$ and our $k$-categories are enriched, then
       
  1031 $\cC(W, \cN)$ will have additional structure; see below.)
  1030 $\cC(W, \cN)$ will have additional structure; see below.)
  1032 
  1031 
  1033 Define a permissible decomposition of $W$ to be a decomposition
  1032 Define a permissible decomposition of $W$ to be a decomposition
  1034 \[
  1033 \[
  1035 	W = \left(\bigcup_a X_a\right) \cup \left(\bigcup_{i,b} M_{ib}\right) ,
  1034 	W = \left(\bigcup_a X_a\right) \cup \left(\bigcup_{i,b} M_{ib}\right) ,
  1037 where each $X_a$ is a plain $k$-ball (disjoint from $\bd W$) and
  1036 where each $X_a$ is a plain $k$-ball (disjoint from $\bd W$) and
  1038 each $M_{ib}$ is a marked $k$-ball intersecting $\bd_i W$,
  1037 each $M_{ib}$ is a marked $k$-ball intersecting $\bd_i W$,
  1039 with $M_{ib}\cap Y_i$ being the marking.
  1038 with $M_{ib}\cap Y_i$ being the marking.
  1040 (See Figure \ref{mblabel}.)
  1039 (See Figure \ref{mblabel}.)
  1041 \begin{figure}[!ht]\begin{equation*}
  1040 \begin{figure}[!ht]\begin{equation*}
  1042 \mathfig{.6}{ncat/mblabel}
  1041 \mathfig{.4}{ncat/mblabel}
  1043 \end{equation*}\caption{A permissible decomposition of a manifold
  1042 \end{equation*}\caption{A permissible decomposition of a manifold
  1044 whose boundary components are labeled by $\cC$ modules $\{\cN_i\}$. Marked balls are shown shaded, plain balls are unshaded.}\label{mblabel}\end{figure}
  1043 whose boundary components are labeled by $\cC$ modules $\{\cN_i\}$. Marked balls are shown shaded, plain balls are unshaded.}\label{mblabel}\end{figure}
  1045 Given permissible decompositions $x$ and $y$, we say that $x$ is a refinement
  1044 Given permissible decompositions $x$ and $y$, we say that $x$ is a refinement
  1046 of $y$, or write $x \le y$, if each ball of $y$ is a union of balls of $x$.
  1045 of $y$, or write $x \le y$, if each ball of $y$ is a union of balls of $x$.
  1047 This defines a partial ordering $\cJ(W)$, which we will think of as a category.
  1046 This defines a partial ordering $\cJ(W)$, which we will think of as a category.
  1048 (The objects of $\cJ(D)$ are permissible decompositions of $W$, and there is a unique
  1047 (The objects of $\cJ(D)$ are permissible decompositions of $W$, and there is a unique
  1049 morphism from $x$ to $y$ if and only if $x$ is a refinement of $y$.)
  1048 morphism from $x$ to $y$ if and only if $x$ is a refinement of $y$.)
  1050 
  1049 
  1051 $\cN$ determines 
  1050 The collection of modules $\cN$ determines 
  1052 a functor $\psi_\cN$ from $\cJ(W)$ to the category of sets 
  1051 a functor $\psi_\cN$ from $\cJ(W)$ to the category of sets 
  1053 (possibly with additional structure if $k=n$).
  1052 (possibly with additional structure if $k=n$).
  1054 For a decomposition $x = (X_a, M_{ib})$ in $\cJ(W)$, define $\psi_\cN(x)$ to be the subset
  1053 For a decomposition $x = (X_a, M_{ib})$ in $\cJ(W)$, define $\psi_\cN(x)$ to be the subset
  1055 \[
  1054 \[
  1056 	\psi_\cN(x) \sub \left(\prod_a \cC(X_a)\right) \times \left(\prod_{ib} \cN_i(M_{ib})\right)
  1055 	\psi_\cN(x) \sub \left(\prod_a \cC(X_a)\right) \times \left(\prod_{ib} \cN_i(M_{ib})\right)
  1057 \]
  1056 \]
  1058 such that the restrictions to the various pieces of shared boundaries amongst the
  1057 such that the restrictions to the various pieces of shared boundaries amongst the
  1059 $X_a$ and $M_{ib}$ all agree.
  1058 $X_a$ and $M_{ib}$ all agree.
  1060 (Think fibered product.)
  1059 (That is, the fibered product over the boundary maps.)
  1061 If $x$ is a refinement of $y$, define a map $\psi_\cN(x)\to\psi_\cN(y)$
  1060 If $x$ is a refinement of $y$, define a map $\psi_\cN(x)\to\psi_\cN(y)$
  1062 via the gluing (composition or action) maps from $\cC$ and the $\cN_i$.
  1061 via the gluing (composition or action) maps from $\cC$ and the $\cN_i$.
  1063 
  1062 
  1064 Finally, define $\cC(W, \cN)$ to be the colimit of $\psi_\cN$.
  1063 We now define the set $\cC(W, \cN)$ to be the colimit of the functor $\psi_\cN$.
  1065 (Recall that if $k=n$ and we are in the $A_\infty$ case, then ``colimit" means
  1064 (As usual, if $k=n$ and we are in the $A_\infty$ case, then ``colimit" means
  1066 homotopy colimit.)
  1065 homotopy colimit.)
  1067 
  1066 
  1068 If $D$ is an $m$-ball, $0\le m \le n-k$, then we can similarly define
  1067 If $D$ is an $m$-ball, $0\le m \le n-k$, then we can similarly define
  1069 $\cC(D\times W, \cN)$, where in this case $\cN_i$ labels the submanifold 
  1068 $\cC(D\times W, \cN)$, where in this case $\cN_i$ labels the submanifold 
  1070 $D\times Y_i \sub \bd(D\times W)$.
  1069 $D\times Y_i \sub \bd(D\times W)$. It is not hard to see that the assignment $D \mapsto \cC(D\times W, \cN)$
  1071 
  1070 has the structure of an $n{-}k$-category, which we call $\cT(W, \cN)(D)$.
  1072 It is not hard to see that the assignment $D \mapsto \cT(W, \cN)(D) \deq \cC(D\times W, \cN)$
       
  1073 has the structure of an $n{-}k$-category.
       
  1074 
  1071 
  1075 \medskip
  1072 \medskip
  1076 
  1073 
  1077 
  1074 
  1078 We will use a simple special case of the above 
  1075 We will use a simple special case of the above 
  1079 construction to define tensor products 
  1076 construction to define tensor products 
  1080 of modules.
  1077 of modules.
  1081 Let $\cM_1$ and $\cM_2$ be modules for an $n$-category $\cC$.
  1078 Let $\cM_1$ and $\cM_2$ be modules for an $n$-category $\cC$.
  1082 (If $k=1$ and manifolds are oriented, then one should be 
  1079 (If $k=1$ and our manifolds are oriented, then one should be 
  1083 a left module and the other a right module.)
  1080 a left module and the other a right module.)
  1084 Choose a 1-ball $J$, and label the two boundary points of $J$ by $\cM_1$ and $\cM_2$.
  1081 Choose a 1-ball $J$, and label the two boundary points of $J$ by $\cM_1$ and $\cM_2$.
  1085 Define the tensor product of $\cM_1$ and $\cM_2$ to be the 
  1082 Define the tensor product $\cM_1 \tensor \cM_2$ to be the 
  1086 $n{-}1$-category $\cT(J, \cM_1, \cM_2)$,
  1083 $n{-}1$-category $\cT(J, \{\cM_1, \cM_2\})$. This of course depends (functorially)
  1087 \[
       
  1088 	\cM_1\otimes \cM_2 \deq \cT(J, \cM_1, \cM_2) .
       
  1089 \]
       
  1090 This of course depends (functorially)
       
  1091 on the choice of 1-ball $J$.
  1084 on the choice of 1-ball $J$.
  1092 
  1085 
  1093 We will define a more general self tensor product (categorified coend) below.
  1086 We will define a more general self tensor product (categorified coend) below.
  1094 
  1087 
  1095 %\nn{what about self tensor products /coends ?}
  1088 %\nn{what about self tensor products /coends ?}
  1103 
  1096 
  1104 \subsection{Morphisms of $A_\infty$ 1-cat modules}
  1097 \subsection{Morphisms of $A_\infty$ 1-cat modules}
  1105 
  1098 
  1106 In order to state and prove our version of the higher dimensional Deligne conjecture
  1099 In order to state and prove our version of the higher dimensional Deligne conjecture
  1107 (Section \ref{sec:deligne}),
  1100 (Section \ref{sec:deligne}),
  1108 we need to define morphisms of $A_\infty$ 1-cat modules and establish
  1101 we need to define morphisms of $A_\infty$ 1-category modules and establish
  1109 some of their elementary properties.
  1102 some of their elementary properties.
  1110 
  1103 
  1111 To motivate the definitions which follow, consider algebras $A$ and $B$, right/bi/left modules
  1104 To motivate the definitions which follow, consider algebras $A$ and $B$,  right modules $X_B$ and $Z_A$ and a bimodule $\leftidx{_B}{Y}{_A}$, and the familiar adjunction
  1112 $X_B$, $_BY_A$ and $Z_A$, and the familiar adjunction
       
  1113 \begin{eqnarray*}
  1105 \begin{eqnarray*}
  1114 	\hom_A(X_B\ot {_BY_A} \to Z_A) &\cong& \hom_B(X_B \to \hom_A( {_BY_A} \to Z_A)) \\
  1106 	\hom_A(X_B\ot {_BY_A} \to Z_A) &\cong& \hom_B(X_B \to \hom_A( {_BY_A} \to Z_A)) \\
  1115 	f &\mapsto& [x \mapsto f(x\ot -)] \\
  1107 	f &\mapsto& [x \mapsto f(x\ot -)] \\
  1116 	{}[x\ot y \mapsto g(x)(y)] & \mapsfrom & g .
  1108 	{}[x\ot y \mapsto g(x)(y)] & \mapsfrom & g .
  1117 \end{eqnarray*}
  1109 \end{eqnarray*}
  1123 and modules $\cM_\cC$ and $_\cC\cN$,
  1115 and modules $\cM_\cC$ and $_\cC\cN$,
  1124 \[
  1116 \[
  1125 	(\cM_\cC\ot {_\cC\cN})^* \cong  \hom_\cC(\cM_\cC \to (_\cC\cN)^*) .
  1117 	(\cM_\cC\ot {_\cC\cN})^* \cong  \hom_\cC(\cM_\cC \to (_\cC\cN)^*) .
  1126 \]
  1118 \]
  1127 
  1119 
  1128 In the next few paragraphs we define the things appearing in the above equation:
  1120 In the next few paragraphs we define the objects appearing in the above equation:
  1129 $\cM_\cC\ot {_\cC\cN}$, $(\cM_\cC\ot {_\cC\cN})^*$, $(_\cC\cN)^*$ and finally
  1121 $\cM_\cC\ot {_\cC\cN}$, $(\cM_\cC\ot {_\cC\cN})^*$, $(_\cC\cN)^*$ and finally
  1130 $\hom_\cC$.
  1122 $\hom_\cC$.
  1131 
  1123 
  1132 In the previous subsection we defined a tensor product of $A_\infty$ $n$-cat modules
  1124 
       
  1125 \def\olD{{\overline D}}
       
  1126 \def\cbar{{\bar c}}
       
  1127 In the previous subsection we defined a tensor product of $A_\infty$ $n$-category modules
  1133 for general $n$.
  1128 for general $n$.
  1134 For $n=1$ this definition is a homotopy colimit indexed by subdivisions of a fixed interval $J$
  1129 For $n=1$ this definition is a homotopy colimit indexed by subdivisions of a fixed interval $J$
  1135 and their gluings (antirefinements).
  1130 and their gluings (antirefinements).
  1136 (The tensor product will depend (functorially) on the choice of $J$.)
  1131 (This tensor product depends functorially on the choice of $J$.)
  1137 To a subdivision 
  1132 To a subdivision $D$
  1138 \[
  1133 \[
  1139 	J = I_1\cup \cdots\cup I_p
  1134 	J = I_1\cup \cdots\cup I_p
  1140 \]
  1135 \]
  1141 we associate the chain complex
  1136 we associate the chain complex
  1142 \[
  1137 \[
  1143 	\cM(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{m-1})\ot\cN(I_m) .
  1138 	\psi(D) = \cM(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{m-1})\ot\cN(I_m) .
  1144 \]
  1139 \]
  1145 (If $D$ denotes the subdivision of $J$, then we denote this complex by $\psi(D)$.)
       
  1146 To each antirefinement we associate a chain map using the composition law of $\cC$ and the 
  1140 To each antirefinement we associate a chain map using the composition law of $\cC$ and the 
  1147 module actions of $\cC$ on $\cM$ and $\cN$.
  1141 module actions of $\cC$ on $\cM$ and $\cN$.
  1148 \def\olD{{\overline D}}
       
  1149 \def\cbar{{\bar c}}
       
  1150 The underlying graded vector space of the homotopy colimit is
  1142 The underlying graded vector space of the homotopy colimit is
  1151 \[
  1143 \[
  1152 	\bigoplus_l \bigoplus_{\olD} \psi(D_0)[l] ,
  1144 	\bigoplus_l \bigoplus_{\olD} \psi(D_0)[l] ,
  1153 \]
  1145 \]
  1154 where $l$ runs through the natural numbers, $\olD = (D_0\to D_1\to\cdots\to D_l)$
  1146 where $l$ runs through the natural numbers, $\olD = (D_0\to D_1\to\cdots\to D_l)$
  1155 runs through chains of antirefinements, and $[l]$ denotes a grading shift.
  1147 runs through chains of antirefinements of length $l+1$, and $[l]$ denotes a grading shift.
  1156 We will denote an element of the summand indexed by $\olD$ by
  1148 We will denote an element of the summand indexed by $\olD$ by
  1157 $\olD\ot m\ot\cbar\ot n$, where $m\ot\cbar\ot n \in \psi(D_0)$.
  1149 $\olD\ot m\ot\cbar\ot n$, where $m\ot\cbar\ot n \in \psi(D_0)$.
  1158 The boundary map is given (ignoring signs) by
  1150 The boundary map is given by
  1159 \begin{eqnarray*}
  1151 \begin{align*}
  1160 	\bd(\olD\ot m\ot\cbar\ot n) &=& \olD\ot\bd(m\ot\cbar)\ot n + \olD\ot m\ot\cbar\ot \bd n + \\
  1152 	\bd(\olD\ot m\ot\cbar\ot n) &= (\bd_0 \olD)\ot \rho(m\ot\cbar\ot n) + (\bd_+ \olD)\ot m\ot\cbar\ot n \; + \\
  1161 			& & \;\;	(\bd_+ \olD)\ot m\ot\cbar\ot n + (\bd_0 \olD)\ot \rho(m\ot\cbar\ot n) ,
  1153 	& \qquad + (-1)^l \olD\ot\bd(m\ot\cbar\ot n) 
  1162 \end{eqnarray*}
  1154 \end{align*}
  1163 where $\bd_+ \olD = \sum_{i>0} (D_0, \cdots \widehat{D_i} \cdots , D_l)$ (the part of the simplicial
  1155 where $\bd_+ \olD = \sum_{i>0} (-1)^i (D_0\to \cdots \to \widehat{D_i} \to \cdots \to D_l)$ (those parts of the simplicial
  1164 boundary which retains $D_0$), $\bd_0 \olD = (D_1, \cdots , D_l)$,
  1156 boundary which retain $D_0$), $\bd_0 \olD = (D_1 \to \cdots \to D_l)$,
  1165 and $\rho$ is the gluing map associated to the antirefinement $D_0\to D_1$.
  1157 and $\rho$ is the gluing map associated to the antirefinement $D_0\to D_1$.
  1166 
  1158 
  1167 $(\cM_\cC\ot {_\cC\cN})^*$ is just the dual chain complex to $\cM_\cC\ot {_\cC\cN}$:
  1159 $(\cM_\cC\ot {_\cC\cN})^*$ is just the dual chain complex to $\cM_\cC\ot {_\cC\cN}$:
  1168 \[
  1160 \[
  1169 	\prod_l \prod_{\olD} (\psi(D_0)[l])^* ,
  1161 	\prod_l \prod_{\olD} (\psi(D_0)[l])^* ,
  1173 \begin{eqnarray*}
  1165 \begin{eqnarray*}
  1174 	(\bd f)(\olD\ot m\ot\cbar\ot n) &=& f(\olD\ot\bd(m\ot\cbar)\ot n) + 
  1166 	(\bd f)(\olD\ot m\ot\cbar\ot n) &=& f(\olD\ot\bd(m\ot\cbar)\ot n) + 
  1175 													f(\olD\ot m\ot\cbar\ot \bd n) + \\
  1167 													f(\olD\ot m\ot\cbar\ot \bd n) + \\
  1176 			& & \;\;	f((\bd_+ \olD)\ot m\ot\cbar\ot n) + f((\bd_0 \olD)\ot \rho(m\ot\cbar\ot n)) .
  1168 			& & \;\;	f((\bd_+ \olD)\ot m\ot\cbar\ot n) + f((\bd_0 \olD)\ot \rho(m\ot\cbar\ot n)) .
  1177 \end{eqnarray*}
  1169 \end{eqnarray*}
  1178 (Again, we are ignoring signs.)
  1170 (Again, we are ignoring signs.) \nn{put signs in}
  1179 
  1171 
  1180 Next we define the dual module $(_\cC\cN)^*$.
  1172 Next we define the dual module $(_\cC\cN)^*$.
  1181 This will depend on a choice of interval $J$, just as the tensor product did.
  1173 This will depend on a choice of interval $J$, just as the tensor product did.
  1182 Recall that $_\cC\cN$ is, among other things, a functor from right-marked intervals
  1174 Recall that $_\cC\cN$ is, among other things, a functor from right-marked intervals
  1183 to chain complexes.
  1175 to chain complexes.
  1203 \end{eqnarray*}
  1195 \end{eqnarray*}
  1204 
  1196 
  1205 We are almost ready to give the definition of morphisms between arbitrary modules
  1197 We are almost ready to give the definition of morphisms between arbitrary modules
  1206 $\cX_\cC$ and $\cY_\cC$.
  1198 $\cX_\cC$ and $\cY_\cC$.
  1207 Note that the rightmost interval $I_m$ does not appear above, except implicitly in $\olD$.
  1199 Note that the rightmost interval $I_m$ does not appear above, except implicitly in $\olD$.
  1208 To fix this, we define subdivisions are antirefinements of left-marked intervals.
  1200 To fix this, we define subdivisions as antirefinements of left-marked intervals.
  1209 Subdivisions are just the obvious thing, but antirefinements are defined to mimic
  1201 Subdivisions are just the obvious thing, but antirefinements are defined to mimic
  1210 the above antirefinements of the fixed interval $J$, but with the rightmost subinterval $I_m$ always
  1202 the above antirefinements of the fixed interval $J$, but with the rightmost subinterval $I_m$ always
  1211 omitted.
  1203 omitted.
  1212 More specifically, $D\to D'$ is an antirefinement if $D'$ is obtained from $D$ by 
  1204 More specifically, $D\to D'$ is an antirefinement if $D'$ is obtained from $D$ by 
  1213 gluing subintervals together and/or omitting some of the rightmost subintervals.
  1205 gluing subintervals together and/or omitting some of the rightmost subintervals.