text/smallblobs.tex
changeset 222 217b6a870532
parent 173 299b404b3bc0
child 224 9faf1f7fad3e
--- a/text/smallblobs.tex	Thu Mar 18 19:40:46 2010 +0000
+++ b/text/smallblobs.tex	Sat Mar 27 03:07:45 2010 +0000
@@ -3,12 +3,37 @@
 
 Fix $\cU$, an open cover of $M$. Define the `small blob complex' $\bc^{\cU}_*(M)$ to be the subcomplex of $\bc_*(M)$ of all blob diagrams in which every blob is contained in some open set of $\cU$.
 
-\begin{lem}[Small blobs]
+\begin{thm}[Small blobs]
 The inclusion $i: \bc^{\cU}_*(M) \into \bc_*(M)$ is a homotopy equivalence.
-\end{lem}
+\end{thm}
 \begin{proof}
-Given a blob diagram $b \in \bc_k(M)$, denote by $b_\cS$ for $\cS \subset \{1, \ldots, k\}$ the blob diagram obtained by erasing the corresponding blobs. In particular, $b_\eset = b$, $b_{\{1,\ldots,k\}} \in \bc_0(M)$, and $d b_\cS = \sum_{\cS' = \cS'\sqcup\{i\}} \text{some sign} b_{\cS'}$.
-Similarly, for a configuration of $k$ blobs $\beta$ (that is, an choice of embeddings of balls in $M$, satisfying the disjointness rules for blobs, rather than a blob diagram, which is additionally labelled by appropriate fields), $\beta_\cS$ denotes the result of erasing a subset of blobs. We'll write $\beta' \prec \beta$ if $\beta' = \beta_\cS$ for some $\cS$. Finally, for finite sequences, we'll write $i \prec i'$ if $i$ is subsequence of $i'$, and $i \prec_1 i$ if the lengths differ by exactly 1.
+We begin by describing the homotopy inverse in small degrees, to illustrate the general technique.
+We will construct a chain map $s:  \bc_*(M) \to \bc^{\cU}_*(M)$ and a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ so that $\bdy h+h \bdy=\id - i\circ s$. The composition $s \circ i$ will just be the identity.
+
+On $0$-blobs, $s$ is just the identity; a blob diagram without any blobs is compatible with any open cover. Nevertheless, we'll begin introducing nomenclature at this point: for configuration $\beta$ of disjoint embedded balls in $M$ we'll associate a one parameter family of homeomorphisms $\phi_\beta : \Delta^1 \to \Homeo(M)$ (here $\Delta^m$ is the standard simplex $\setc{\mathbf{x} \in \Real^{m+1}}{\sum_i x_i = 1}$). For $0$-blobs, where $\beta = \eset$, all these homeomorphisms are just the identity.
+
+On a $1$-blob $b$, with ball $\beta$, $s$ is defined as the sum of two terms. Essentially, the first term `makes $\beta$ small', while the other term `gets the boundary right'. First, pick a one-parameter family $\phi_\beta : \Delta^1 \to \Homeo(M)$ of homeomorphisms, so $\phi_\beta(0,1)$ is the identity and $\phi_\beta(1,0)$ makes the ball $\beta$ small. Next, pick a two-parameter family $\phi_{\eset \prec \beta} : \Delta^2 \to \Homeo(M)$ so that $\phi_{\eset \prec \beta}(s,t,0)$ makes the ball $\beta$ small for all $s+t=1$, while $\phi_{\eset \prec \beta}(0,t,u) = \phi_\eset(t,u)$ and $\phi_{\eset \prec \beta}(s,0,u) = \phi_\beta(s,u)$. (It's perhaps not obvious that this is even possible --- see Lemma \ref{lem:extend-small-homeomorphisms} below.) We now define $s$ by
+$$s(b) = \phi_\beta(1,0)(b) + \restrict{\phi_{\eset \prec \beta}}{u=0}(\bdy b).$$
+Here, $\phi_\beta(1,0)$ is just a homeomorphism, which we apply to $b$, while $\restrict{\phi_{\eset \prec \beta}}{u=0}$ is a one parameter family of homeomorphisms which acts on the $0$-blob $\bdy b$ to give a $1$-blob. We now check that $s$, as defined so far, is a chain map, calculating
+\begin{align*}
+\bdy (s(b)) & = \phi_\beta(1,0)(\bdy b) + (\bdy \restrict{\phi_{\eset \prec \beta}}{u=0})(\bdy b) \\
+		 & = \phi_\beta(1,0)(\bdy b) + \phi_\eset(1,0)(\bdy b) - \phi_\beta(1,0)(\bdy b) \\
+		 & = \phi_\eset(1,0)(\bdy b) \\
+		 & = s(\bdy b)
+\end{align*}
+Next, we compute the compositions $s \circ i$ and $i \circ s$. If we start with a small $1$-blob diagram $b$, first include it up to the full blob complex then apply $s$, we get exactly back to $b$, at least assuming we adopt the convention that for any ball $\beta$ which is already small, we choose the families of homeomorphisms $\phi_\beta$ and $\phi_{\eset \prec \beta}$ to always be the identity. In the other direction, $i \circ s$, we will need to construct the homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ for $*=0$ or $1$. This is defined by $h(b) = \phi_\eset(b)$ when $b$ is a $0$-blob (here $\phi_\eset$ is a one parameter family of homeomorphisms, so this is a $1$-blob), and $h(b) = \phi_\beta(b) - \phi_{\eset \prec \beta}(\bdy b)$ when $b$ is a $1$-blob (here $\beta$ is the ball in $b$, and this is the action of a one parameter family of homeomorphisms on a $1$-blob, so a $2$-blob).
+
+\begin{align*}
+(\bdy h+h \bdy)(b) & = \bdy (\phi_{\beta}(b) - \phi_{\eset \prec \beta}{\bdy b}) + \phi_\eset(\bdy b)  \\
+	& = b - \phi_\beta(1,0)(b) - \phi_\beta(\bdy b) - (\bdy \phi_{\eset \prec \beta})(\bdy b) + \phi_\eset(\bdy b) \\
+	& =  b - \phi_\beta(1,0)(b) - \phi_\beta(\bdy b) -  \phi_\eset(\bdy b) + \phi_\beta(\bdy b) - \restrict{\phi_{\eset \prec \beta}}{u=0}(\bdy b) + \phi_\eset(\bdy b) \\
+	& = b - \phi_\beta(1,0)(b) - \restrict{\phi_{\eset \prec \beta}}{u=0}(\bdy b) \\
+	& = (\id - i \circ s)(b)
+\end{align*}
+
+
+Given a blob diagram $b \in \bc_k(M)$, denote by $b_\cS$ for $\cS \subset \{1, \ldots, k\}$ the blob diagram obtained by erasing the corresponding blobs. In particular, $b_\eset = b$, $b_{\{1,\ldots,k\}} \in \bc_0(M)$, and $d b_\cS = \sum_{\cS' = \cS'\sqcup\{i\}} \pm  b_{\cS'}$.
+Similarly, for a disjoint embedding of $k$ balls $\beta$ (that is, a blob diagram but without the labels on regions), $\beta_\cS$ denotes the result of erasing a subset of blobs. We'll write $\beta' \prec \beta$ if $\beta' = \beta_\cS$ for some $\cS$. Finally, for finite sequences, we'll write $i \prec i'$ if $i$ is subsequence of $i'$, and $i \prec_1 i$ if the lengths differ by exactly 1.
 
 Next, we'll choose a `shrinking system' for $\cU$, namely for each increasing sequence of blob configurations
 $\beta_0 \prec \beta_1 \prec \cdots \prec \beta_m$, an $m$ parameter family of diffeomorphisms
@@ -22,13 +47,20 @@
 \phi_{\beta_0 \prec \cdots \prec \beta_m}(x_0, \ldots, x_{i-1},0,x_{i+1},\ldots,x_m) & = \phi_{\beta_0 \prec \cdots \beta_{i-1} \prec \beta_{i+1} \prec \beta_m}(x_0,\ldots, x_{i-1},x_{i+1},\ldots,x_m).
 \end{align*}
 \end{itemize}
-It's not immediately obvious that it's possible to make such choices, but it follows quickly from
-\begin{claim}
-If $\beta$ is a collection of disjointly embedded balls in $M$, and $\varphi: B^k \to \Diff{M}$ is a map into diffeomorphisms such that for every $x\in \bdy B^k$, $\varphi(x)(\beta)$ is subordinate to $\cU$, then we can extend $\varphi$ to $\varphi:B^{k+1} \to \Diff{M}$, with the original $B^k$ as $\bdy^{\text{north}}(B^{k+1})$, and $\varphi(x)(\beta)$ subordinate to $\cU$ for every $x \in \bdy^{\text{south}}(B^{k+1})$.
+It's not immediately obvious that it's possible to make such choices, but it follows readily from the following Lemma.
+
+When $\beta$ is a collection of disjoint embedded balls in $M$, we say that a homeomorphism of $M$ `makes $\beta$ small' if the image of each ball in $\beta$ under the homeomorphism is contained in some open set of $\cU$.
 
-In fact, for a fixed $\beta$, $\Diff{M}$ retracts onto the subset $\setc{\varphi \in \Diff{M}}{\text{$\varphi(\beta)$ is subordinate to $\cU$}}$.
-\end{claim}
-\nn{need to check that this is true.}
+\begin{lem}
+\label{lem:extend-small-homeomorphisms}
+Fix a collection of disjoint embedded balls $\beta$ in $M$. Suppose we have a map $f :  X \to \Homeo(M)$ on some compact $X$ such that for each $x \in \bdy X$, $f(x)$ makes $\beta$ small. Then we can extend $f$ to a map $\tilde{f} : X \times [0,1] \to \Homeo(M)$ so that $\tilde{f}(x,0) = f(x)$ and for every $x \in \bdy X \times [0,1] \cup X \times \{1\}$, $\tilde{f}(x)$ makes $\beta$ small.
+\end{lem}
+\begin{proof}
+Fix a metric on $M$, and pick $\epsilon > 0$ so every $\epsilon$ ball in $M$ is contained in some open set of $\cU$. First construct a family of homeomorphisms $g_s : M \to M$, $s \in [1,\infty)$ so $g_1$ is the identity, and $g_s(\beta_i) \subset \beta_i$ and $\rad g_s(\beta_i) \leq \frac{1}{s} \rad \beta_i$ for each ball $\beta_i$. 
+There is some $K$ which uniformly bounds the expansion factors of all the homeomorphisms $f(x)$, that is $d(f(x)(a), f(x)(b)) < K d(a,b)$ for all $x \in X, a,b \in M$. Write $S=\epsilon^{-1} K \max_i \{\rad \beta_i\}$ (note that is $S<1$, we can just take $S=1$, as already $f(x)$ makes $\beta$ small for all $x$). Now define $\tilde{f}(t, x) = f(x) \compose g_{(S-1)t+1}$.
+
+If $x \in \bdy X$, then $g_{(S-1)t+1}(\beta_i) \subset \beta_i$, and by hypothesis $f(x)$ makes $\beta_i$ small, so $\tilde{f}(t, x)$ makes $\beta$ small for all $t \in [0,1]$. Alternatively, $\rad g_S(\beta_i) \leq \frac{1}{S} \rad \beta_i \leq \frac{\epsilon}{K}$, so $\rad \tilde{f}(1,x)(\beta_i) \leq \epsilon$, and so $\tilde{f}(1,x)$ makes $\beta$ small for all $x \in X$.
+\end{proof}
 
 We'll need a stronger version of Property \ref{property:evaluation}; while the evaluation map $ev: \CD{M} \tensor \bc_*(M) \to \bc_*(M)$ is not unique, it has an up-to-homotopy representative (satisfying the usual conditions) which restricts to become a chain map $ev: \CD{M} \tensor \bc^{\cU}_*(M) \to \bc^{\cU}_*(M)$. The proof is straightforward: when deforming the family of diffeomorphisms to shrink its supports to a union of open sets, do so such that those open sets are subordinate to the cover.