text/intro.tex
changeset 292 7d0c63a9ce05
parent 284 a746cd526cdd
child 307 285b2a29dff0
--- a/text/intro.tex	Fri May 28 15:20:11 2010 -0700
+++ b/text/intro.tex	Fri May 28 16:28:47 2010 -0700
@@ -287,7 +287,7 @@
 In most of the places where we say ``set" or ``vector space", any symmetric monoidal category would do. We could presumably also replace many of our chain complexes with topological spaces (or indeed, work at the generality of model categories), and likely it will prove useful to think about the connections between what we do here and $(\infty,k)$-categories.
 More could be said about finite characteristic (there appears in be $2$-torsion in $\bc_1(S^2, \cC)$ for any spherical $2$-category $\cC$, for example). Much more could be said about other types of manifolds, in particular oriented, $\operatorname{Spin}$ and $\operatorname{Pin}^{\pm}$ manifolds, where boundary issues become more complicated. (We'd recommend thinking about boundaries as germs, rather than just codimension $1$ manifolds.) We've also take the path of least resistance by considering $\operatorname{PL}$ manifolds; there may be some differences for topological manifolds and smooth manifolds.
 
-Many results in Hochschild homology can be understood `topologically' via the blob complex. For example, we expect that the shuffle product on the Hochschild homology of a commutative algebra $A$ simply corresponds to the gluing operation on $\bc_*(S^1 \times [0,1], A)$, but haven't investigated the details.
+Many results in Hochschild homology can be understood `topologically' via the blob complex. For example, we expect that the shuffle product on the Hochschild homology of a commutative algebra $A$ (see \cite[\S 4.2]{MR1600246}) simply corresponds to the gluing operation on $\bc_*(S^1 \times [0,1], A)$, but haven't investigated the details.
 
 Most importantly, however, \nn{applications!} \nn{cyclic homology, $n=2$ cases, contact, Kh}