text/appendixes/smallblobs.tex
changeset 417 d3b05641e7ca
parent 405 2e1b1efbf928
child 451 bb7e388b9704
--- a/text/appendixes/smallblobs.tex	Sun Jul 04 13:15:03 2010 -0600
+++ b/text/appendixes/smallblobs.tex	Sun Jul 04 23:32:48 2010 -0600
@@ -30,9 +30,9 @@
 But as noted above, maybe it's best to ignore this.}
 Nevertheless, we'll begin introducing nomenclature at this point: for configuration $\beta$ of disjoint embedded balls in $M$ we'll associate a one parameter family of homeomorphisms $\phi_\beta : \Delta^1 \to \Homeo(M)$ (here $\Delta^m$ is the standard simplex $\setc{\mathbf{x} \in \Real^{m+1}}{\sum_{i=0}^m x_i = 1}$). For $0$-blobs, where $\beta = \eset$, all these homeomorphisms are just the identity.
 
-When $\beta$ is a collection of disjoint embedded balls in $M$, we say that a homeomorphism of $M$ `makes $\beta$ small' if the image of each ball in $\beta$ under the homeomorphism is contained in some open set of $\cU$. Further, we'll say a homeomorphism `makes $\beta$ $\epsilon$-small' if the image of each ball is contained in some open ball of radius $\epsilon$.
+When $\beta$ is a collection of disjoint embedded balls in $M$, we say that a homeomorphism of $M$ ``makes $\beta$ small" if the image of each ball in $\beta$ under the homeomorphism is contained in some open set of $\cU$. Further, we'll say a homeomorphism ``makes $\beta$ $\epsilon$-small" if the image of each ball is contained in some open ball of radius $\epsilon$.
 
-On a $1$-blob $b$, with ball $\beta$, $s$ is defined as the sum of two terms. Essentially, the first term `makes $\beta$ small', while the other term `gets the boundary right'. First, pick a one-parameter family $\phi_\beta : \Delta^1 \to \Homeo(M)$ of homeomorphisms, so $\phi_\beta(1,0)$ is the identity and $\phi_\beta(0,1)$ makes the ball $\beta$ small --- in fact, not just small with respect to $\cU$, but $\epsilon/2$-small, where $\epsilon > 0$ is such that every $\epsilon$-ball is contained in some open set of $\cU$. Next, pick a two-parameter family $\phi_{\eset \prec \beta} : \Delta^2 \to \Homeo(M)$ so that $\phi_{\eset \prec \beta}(0,x_1,x_2)$ makes the ball $\beta$ $\frac{3\epsilon}{4}$-small for all $x_1+x_2=1$, while $\phi_{\eset \prec \beta}(x_0,0,x_2) = \phi_\beta(x_0,x_2)$ and $\phi_{\eset \prec \beta}(x_0,x_1,0) = \phi_\eset(x_0,x_1)$. (It's perhaps not obvious that this is even possible --- see Lemma \ref{lem:extend-small-homeomorphisms} below.) We now define $s$ by
+On a $1$-blob $b$, with ball $\beta$, $s$ is defined as the sum of two terms. Essentially, the first term ``makes $\beta$ small", while the other term ``gets the boundary right". First, pick a one-parameter family $\phi_\beta : \Delta^1 \to \Homeo(M)$ of homeomorphisms, so $\phi_\beta(1,0)$ is the identity and $\phi_\beta(0,1)$ makes the ball $\beta$ small --- in fact, not just small with respect to $\cU$, but $\epsilon/2$-small, where $\epsilon > 0$ is such that every $\epsilon$-ball is contained in some open set of $\cU$. Next, pick a two-parameter family $\phi_{\eset \prec \beta} : \Delta^2 \to \Homeo(M)$ so that $\phi_{\eset \prec \beta}(0,x_1,x_2)$ makes the ball $\beta$ $\frac{3\epsilon}{4}$-small for all $x_1+x_2=1$, while $\phi_{\eset \prec \beta}(x_0,0,x_2) = \phi_\beta(x_0,x_2)$ and $\phi_{\eset \prec \beta}(x_0,x_1,0) = \phi_\eset(x_0,x_1)$. (It's perhaps not obvious that this is even possible --- see Lemma \ref{lem:extend-small-homeomorphisms} below.) We now define $s$ by
 $$s(b) = \restrict{\phi_\beta}{x_0=0}(b) - \restrict{\phi_{\eset \prec \beta}}{x_0=0}(\bdy b).$$
 Here, $\restrict{\phi_\beta}{x_0=0} = \phi_\beta(0,1)$ is just a homeomorphism, which we apply to $b$, while $\restrict{\phi_{\eset \prec \beta}}{x_0=0}$ is a one parameter family of homeomorphisms which acts on the $0$-blob $\bdy b$ to give a $1$-blob. To be precise, this action is via the chain map identified in Lemma \ref{lem:CH-small-blobs} with $\cV_0$ the open cover by $\epsilon/2$-balls and $\cV_1$ the open cover by $\frac{3\epsilon}{4}$-balls. From this, it is immediate that $s(b) \in \bc^{\cU}_1(M)$, as desired.
 
@@ -57,7 +57,7 @@
 
 In order to define $s$ on arbitrary blob diagrams, we first fix a sequence of strictly subordinate covers for $\cU$. First choose an $\epsilon > 0$ so every $\epsilon$ ball is contained in some open set of $\cU$. For $k \geq 1$, let $\cV_{k}$ be the open cover of $M$ by $\epsilon (1-2^{-k})$ balls, and $\cV_0 = \cU$. Certainly $\cV_k$ is strictly subordinate to $\cU$. We now chose the chain map $\ev$ provided by Lemma \ref{lem:CH-small-blobs} for the open covers $\cV_k$ strictly subordinate to $\cU$. Note that $\cV_1$ and $\cV_2$ have already implicitly appeared in the description above.
 
-Next, we choose a `shrinking system' for $\left(\cU,\{\cV_k\}_{k \geq 1}\right)$, namely for each increasing sequence of blob configurations
+Next, we choose a ``shrinking system" for $\left(\cU,\{\cV_k\}_{k \geq 1}\right)$, namely for each increasing sequence of blob configurations
 $\beta_1 \prec \cdots \prec \beta_n$, an $n$ parameter family of diffeomorphisms
 $\phi_{\beta_1 \prec \cdots \prec \beta_n} : \Delta^{n+1} \to \Diff{M}$, such that
 \begin{itemize}