text/comm_alg.tex
author Scott Morrison <scott@tqft.net>
Wed, 07 Jul 2010 10:17:21 -0600
changeset 420 257066702f60
parent 400 a02a6158f3bd
child 432 35755232f6ad
child 437 93ce0ba3d2d7
permissions -rw-r--r--
minor

%!TEX root = ../blob1.tex

\section{Commutative algebras as $n$-categories}
\label{sec:comm_alg}

\nn{should consider leaving this out; for now, make it an appendix.}

\nn{also, this section needs a little updating to be compatible with the rest of the paper.}

If $C$ is a commutative algebra it
can also be thought of as an $n$-category whose $j$-morphisms are trivial for
$j<n$ and whose $n$-morphisms are $C$. 
The goal of this \nn{subsection?} is to compute
$\bc_*(M^n, C)$ for various commutative algebras $C$.

Moreover, we conjecture that the blob complex $\bc_*(M^n, $C$)$, for $C$ a commutative 
algebra is homotopy equivalent to the higher Hochschild complex for $M^n$ with 
coefficients in $C$ (see \cite{MR0339132, MR1755114, MR2383113}).  
This possibility was suggested to us by Thomas Tradler.


\medskip

Let $k[t]$ denote the ring of polynomials in $t$ with coefficients in $k$.

Let $\Sigma^i(M)$ denote the $i$-th symmetric power of $M$, the configuration space of $i$
unlabeled points in $M$.
Note that $\Sigma^0(M)$ is a point.
Let $\Sigma^\infty(M) = \coprod_{i=0}^\infty \Sigma^i(M)$.

Let $C_*(X, k)$ denote the singular chain complex of the space $X$ with coefficients in $k$.

\begin{prop} \label{sympowerprop}
$\bc_*(M, k[t])$ is homotopy equivalent to $C_*(\Sigma^\infty(M), k)$.
\end{prop}

\begin{proof}
To define the chain maps between the two complexes we will use the following lemma:

\begin{lemma}
Let $A_*$ and $B_*$ be chain complexes, and assume $A_*$ is equipped with
a basis (e.g.\ blob diagrams or singular simplices).
For each basis element $c \in A_*$ assume given a contractible subcomplex $R(c)_* \sub B_*$
such that $R(c')_* \sub R(c)_*$ whenever $c'$ is a basis element which is part of $\bd c$.
Then the complex of chain maps (and (iterated) homotopies) $f:A_*\to B_*$ such that
$f(c) \in R(c)_*$ for all $c$ is contractible (and in particular non-empty).
\end{lemma}

\begin{proof}
\nn{easy, but should probably write the details eventually}
\nn{this is just the standard ``method of acyclic models" set up, so we should just give a reference for that}
\end{proof}

Our first task: For each blob diagram $b$ define a subcomplex $R(b)_* \sub C_*(\Sigma^\infty(M))$
satisfying the conditions of the above lemma.
If $b$ is a 0-blob diagram, then it is just a $k[t]$ field on $M$, which is a 
finite unordered collection of points of $M$ with multiplicities, which is
a point in $\Sigma^\infty(M)$.
Define $R(b)_*$ to be the singular chain complex of this point.
If $(B, u, r)$ is an $i$-blob diagram, let $D\sub M$ be its support (the union of the blobs).
The path components of $\Sigma^\infty(D)$ are contractible, and these components are indexed 
by the numbers of points in each component of $D$.
We may assume that the blob labels $u$ have homogeneous $t$ degree in $k[t]$, and so
$u$ picks out a component $X \sub \Sigma^\infty(D)$.
The field $r$ on $M\setminus D$ can be thought of as a point in $\Sigma^\infty(M\setminus D)$,
and using this point we can embed $X$ in $\Sigma^\infty(M)$.
Define $R(B, u, r)_*$ to be the singular chain complex of $X$, thought of as a 
subspace of $\Sigma^\infty(M)$.
It is easy to see that $R(\cdot)_*$ satisfies the condition on boundaries from the above lemma.
Thus we have defined (up to homotopy) a map from 
$\bc_*(M^n, k[t])$ to $C_*(\Sigma^\infty(M))$.

Next we define, for each simplex $c$ of $C_*(\Sigma^\infty(M))$, a contractible subspace
$R(c)_* \sub \bc_*(M^n, k[t])$.
If $c$ is a 0-simplex we use the identification of the fields $\cC(M)$ and 
$\Sigma^\infty(M)$ described above.
Now let $c$ be an $i$-simplex of $\Sigma^j(M)$.
Choose a metric on $M$, which induces a metric on $\Sigma^j(M)$.
We may assume that the diameter of $c$ is small --- that is, $C_*(\Sigma^j(M))$
is homotopy equivalent to the subcomplex of small simplices.
How small?  $(2r)/3j$, where $r$ is the radius of injectivity of the metric.
Let $T\sub M$ be the ``track" of $c$ in $M$.
\nn{do we need to define this precisely?}
Choose a neighborhood $D$ of $T$ which is a disjoint union of balls of small diameter.
\nn{need to say more precisely how small}
Define $R(c)_*$ to be $\bc_*(D, k[t]) \sub \bc_*(M^n, k[t])$.
This is contractible by \ref{bcontract}.
We can arrange that the boundary/inclusion condition is satisfied if we start with
low-dimensional simplices and work our way up.
\nn{need to be more precise}

\nn{still to do: show indep of choice of metric; show compositions are homotopic to the identity
(for this, might need a lemma that says we can assume that blob diameters are small)}
\end{proof}


\begin{prop} \label{ktchprop}
The above maps are compatible with the evaluation map actions of $C_*(\Diff(M))$.
\end{prop}

\begin{proof}
The actions agree in degree 0, and both are compatible with gluing.
(cf. uniqueness statement in \ref{CHprop}.)
\end{proof}

\medskip

In view of Theorem \ref{thm:hochschild}, we have proved that $HH_*(k[t]) \cong C_*(\Sigma^\infty(S^1), k)$,
and that the cyclic homology of $k[t]$ is related to the action of rotations
on $C_*(\Sigma^\infty(S^1), k)$.
\nn{probably should put a more precise statement about cyclic homology and $S^1$ actions in the Hochschild section}
Let us check this directly.

The algebra $k[t]$ has Koszul resolution 
$k[t] \tensor k[t] \xrightarrow{t\tensor 1 - 1 \tensor t} k[t] \tensor k[t]$, 
which has coinvariants $k[t] \xrightarrow{0} k[t]$. 
This is equal to its homology, so we have $HH_i(k[t]) \cong k[t]$ for $i=0,1$ and zero for $i\ge 2$.
(See also  \cite[3.2.2]{MR1600246}.) This computation also tells us the $t$-gradings: 
$HH_0(k[t]) \iso k[t]$ is in the usual grading, and $HH_1(k[t]) \iso k[t]$ is shifted up by one.

We can define a flow on $\Sigma^j(S^1)$ by having the points repel each other.
The fixed points of this flow are the equally spaced configurations.
This defines a map from $\Sigma^j(S^1)$ to $S^1/j$ ($S^1$ modulo a $2\pi/j$ rotation).
The fiber of this map is $\Delta^{j-1}$, the $(j-1)$-simplex, 
and the holonomy of the $\Delta^{j-1}$ bundle
over $S^1/j$ is induced by the cyclic permutation of its $j$ vertices.

In particular, $\Sigma^j(S^1)$ is homotopy equivalent to a circle for $j>0$, and
of course $\Sigma^0(S^1)$ is a point.
Thus the singular homology $H_i(\Sigma^\infty(S^1))$ has infinitely many generators for $i=0,1$
and is zero for $i\ge 2$.
Note that the $j$-grading here matches with the $t$-grading on the algebraic side.

By xxxx and Proposition \ref{ktchprop}, 
the cyclic homology of $k[t]$ is the $S^1$-equivariant homology of $\Sigma^\infty(S^1)$.
Up to homotopy, $S^1$ acts by $j$-fold rotation on $\Sigma^j(S^1) \simeq S^1/j$.
If $k = \z$, $\Sigma^j(S^1)$ contributes the homology of an infinite lens space: $\z$ in degree
0, $\z/j \z$ in odd degrees, and 0 in positive even degrees.
The point $\Sigma^0(S^1)$ contributes the homology of $BS^1$ which is $\z$ in even 
degrees and 0 in odd degrees.
This agrees with the calculation in \cite[3.1.7]{MR1600246}.

\medskip

Next we consider the case $C = k[t_1, \ldots, t_m]$, commutative polynomials in $m$ variables.
Let $\Sigma_m^\infty(M)$ be the $m$-colored infinite symmetric power of $M$, that is, configurations
of points on $M$ which can have any of $m$ distinct colors but are otherwise indistinguishable.
The components of $\Sigma_m^\infty(M)$ are indexed by $m$-tuples of natural numbers
corresponding to the number of points of each color of a configuration.
A proof similar to that of \ref{sympowerprop} shows that

\begin{prop}
$\bc_*(M, k[t_1, \ldots, t_m])$ is homotopy equivalent to $C_*(\Sigma_m^\infty(M), k)$.
\end{prop}

According to \cite[3.2.2]{MR1600246},
\[
	HH_n(k[t_1, \ldots, t_m]) \cong \Lambda^n(k^m) \otimes k[t_1, \ldots, t_m] .
\]
Let us check that this is also the singular homology of $\Sigma_m^\infty(S^1)$.
We will content ourselves with the case $k = \z$.
One can define a flow on $\Sigma_m^\infty(S^1)$ where points of the 
same color repel each other and points of different colors do not interact.
This shows that a component $X$ of $\Sigma_m^\infty(S^1)$ is homotopy equivalent
to the torus $(S^1)^l$, where $l$ is the number of non-zero entries in the $m$-tuple
corresponding to $X$.
The homology calculation we desire follows easily from this.

\nn{say something about cyclic homology in this case?  probably not necessary.}

\medskip

Next we consider the case $C$ is the truncated polynomial
algebra $k[t]/t^l$ --- polynomials in $t$ with $t^l = 0$.
Define $\Delta_l \sub \Sigma^\infty(M)$ to be configurations of points in $M$ with $l$ or
more of the points coinciding.

\begin{prop}
$\bc_*(M, k[t]/t^l)$ is homotopy equivalent to $C_*(\Sigma^\infty(M), \Delta_l, k)$
(relative singular chains with coefficients in $k$).
\end{prop}

\begin{proof}
\nn{...}
\end{proof}

\medskip
\hrule
\medskip

Still to do:
\begin{itemize}
\item compare the topological computation for truncated polynomial algebra with \cite{MR1600246}
\item multivariable truncated polynomial algebras (at least mention them)
\item ideally, say something more about higher hochschild homology (maybe sketch idea for proof of equivalence)
\end{itemize}