diff -r 33aaaca22af6 -r 16d7f0938baa blob1.tex --- a/blob1.tex Fri Jun 05 23:02:55 2009 +0000 +++ b/blob1.tex Sun Jun 07 00:51:00 2009 +0000 @@ -1201,6 +1201,7 @@ \input{text/explicit.tex} \section{Comparing definitions of $A_\infty$ algebras} +\label{sec:comparing-A-infty} In this section, we make contact between the usual definition of an $A_\infty$ algebra and our definition of a topological $A_\infty$ algebra, from Definition \ref{defn:topological-Ainfty-category}. We begin be restricting the data of a topological $A_\infty$ algebra to the standard interval $[0,1]$, which we can alternatively characterise as: @@ -1262,6 +1263,31 @@ \todo{then the general case.} We won't describe a reverse construction (producing a topological $A_\infty$ category from a `conventional' $A_\infty$ category), but we presume that this will be easy for the experts. +\section{Morphisms and duals of topological $A_\infty$ modules} +\label{sec:A-infty-hom-and-duals}% + +\begin{defn} +If $\cM$ and $\cN$ are topological $A_\infty$ left modules over a topological $A_\infty$ category $\cC$, then a morphism $f: \cM \to \cN$ consists of a chain map $f:\cM(J,p;b) \to \cN(J,p;b)$ for each right marked interval $(J,p)$ with a boundary condition $b$, such that for each interval $J'$ the diagram +\begin{equation*} +\xymatrix{ +\cC(J';a,b) \tensor \cM(J,p;b) \ar[r]^{\text{gl}} \ar[d]^{\id \tensor f} & \cM(J' cup J,a) \ar[d]^f \\ +\cC(J';a,b) \tensor \cN(J,p;b) \ar[r]^{\text{gl}} & \cN(J' cup J,a) +} +\end{equation*} +commutes on the nose, and the diagram +\begin{equation*} +\xymatrix{ +\CD{(J,p) \to (J',p')} \tensor \cM(J,p;a) \ar[r]^{\text{ev}} \ar[d]^{\id \tensor f} & \cM(J',p';a) \ar[d]^f \\ +\CD{(J,p) \to (J',p')} \tensor \cN(J,p;a) \ar[r]^{\text{ev}} & \cN(J',p';a) \\ +} +\end{equation*} +commutes up to a weakly unique homotopy. +\end{defn} + +The variations required for right modules and bimodules should be obvious. + +\todo{duals} +\todo{ the functors $\hom_{\lmod{\cC}}\left(\cM \to -\right)$ and $\cM^* \tensor_{\cC} -$ from $\lmod{\cC}$ to $\Vect$ are naturally isomorphic} \input{text/obsolete.tex}