diff -r 77b0cdeb0fcd -r 217b6a870532 talks/20091108-Riverside/riverside1.tex --- a/talks/20091108-Riverside/riverside1.tex Thu Mar 18 19:40:46 2010 +0000 +++ b/talks/20091108-Riverside/riverside1.tex Sat Mar 27 03:07:45 2010 +0000 @@ -101,6 +101,14 @@ \begin{block}{Pasting diagrams} Fix an $n$-category with strong duality $\cC$. A \emph{field} on $\cM$ is a pasting diagram drawn on $\cM$, with cells labelled by morphisms from $\cC$. \end{block} +\begin{example}[$\cC = \text{TL}_d$ the Temperley-Lieb category] +$$\roundframe{\mathfig{0.35}{definition/example-pasting-diagram}} \in \cF^{\text{TL}_d}\left(T^2\right)$$ +\end{example} +\begin{block}{} +Given a pasting diagram on a ball, we can evaluate it to a morphism. We call the kernel the \emph{null fields}. +\vspace{-3mm} +$$\text{ev}\Bigg(\roundframe{\mathfig{0.12}{definition/evaluation1}} - \frac{1}{d}\roundframe{\mathfig{0.12}{definition/evaluation2}}\Bigg) = 0$$ +\end{block} \end{frame} \begin{frame}{Background: TQFT invariants} @@ -139,7 +147,7 @@ \begin{block}{} \vspace{-1mm} -$$\bc_1(\cM; \cC) = \setcr{(B, u, r)}{\begin{array}{c}\text{$B$ an embedded ball}\\\text{$u \in \cF(B)$ in the kernel}\\ r \in \cF(\cM \setminus B)\end{array}}.$$ +$$\bc_1(\cM; \cC) = \Complex\setcr{(B, u, r)}{\begin{array}{c}\text{$B$ an embedded ball}\\\text{$u \in \cF(B)$ in the kernel}\\ r \in \cF(\cM \setminus B)\end{array}}.$$ \end{block} \vspace{-3.5mm} $$\mathfig{.5}{definition/single-blob}$$ @@ -160,7 +168,7 @@ \begin{block}{} \vspace{-5mm} \begin{align*} -\bc_2^{\text{disjoint}} & = \setcl{\roundframe{\mathfig{0.5}{definition/disjoint-blobs}}}{\text{ev}_{B_i}(u_i) = 0} +\bc_2^{\text{disjoint}} & = \Complex\setcl{\roundframe{\mathfig{0.5}{definition/disjoint-blobs}}}{\text{ev}_{B_i}(u_i) = 0} \end{align*} \vspace{-4mm} $$d_2 : (B_1, B_2, u_1, u_2, r) \mapsto (B_2, u_2, r \circ u_1) - (B_1, u_1, r \circ u_2)$$ @@ -168,7 +176,7 @@ \begin{block}{} \vspace{-5mm} \begin{align*} -\bc_2^{\text{nested}} & = \setcl{\roundframe{\mathfig{0.5}{definition/nested-blobs}}}{\text{ev}_{B_1}(u)=0} +\bc_2^{\text{nested}} & = \Complex\setcl{\roundframe{\mathfig{0.5}{definition/nested-blobs}}}{\text{ev}_{B_1}(u)=0} \end{align*} \vspace{-4mm} $$d_2 : (B_1, B_2, u, r', r) \mapsto (B_2, u \circ r', r) - (B_1, u, r \circ r')$$ @@ -177,7 +185,7 @@ \begin{frame}{Definition, general case} \begin{block}{} -$$\bc_k = \set{\roundframe{\mathfig{0.7}{definition/k-blobs}}}$$ +$$\bc_k = \Complex\set{\roundframe{\mathfig{0.7}{definition/k-blobs}}}$$ $k$ blobs, properly nested or disjoint, with ``innermost'' blobs labelled by pasting diagrams that evaluate to zero. \end{block} \begin{block}{} @@ -219,6 +227,22 @@ \end{block} \end{frame} +\begin{frame}{Higher Deligne conjecture} +\begin{block}{Deligne conjecture} +Chains on the little discs operad acts on Hochschild cohomology. +\end{block} + +\begin{block}{} +Call $\Hom{A_\infty}{\bc_*(\cM)}{\bc_*(\cM)}$ `blob cochains on $\cM$'. +\end{block} + +\begin{block}{Theorem* (Higher Deligne conjecture)} +\scalebox{0.96}{Chains on the $n$-dimensional fat graph operad acts on blob cochains.} +\vspace{-3mm} +$$\mathfig{.85}{tempkw/delfig2}$$ +\end{block} +\end{frame} + \begin{frame}{Gluing} \begin{block}{$\bc_*(Y \times [0,1])$ is naturally an $A_\infty$ category} \begin{itemize}