diff -r 37f036dda03c -r 291f82fb79b5 text/basic_properties.tex --- a/text/basic_properties.tex Mon Jun 28 08:54:36 2010 -0700 +++ b/text/basic_properties.tex Mon Jun 28 10:03:13 2010 -0700 @@ -95,19 +95,19 @@ For the next proposition we will temporarily restore $n$-manifold boundary conditions to the notation. -Let $X$ be an $n$-manifold, $\bd X = Y \cup (-Y) \cup Z$. +Let $X$ be an $n$-manifold, $\bd X = Y \cup Y \cup Z$. Gluing the two copies of $Y$ together yields an $n$-manifold $X\sgl$ with boundary $Z\sgl$. -Given compatible fields (boundary conditions) $a$, $b$ and $c$ on $Y$, $-Y$ and $Z$, +Given compatible fields (boundary conditions) $a$, $b$ and $c$ on $Y$, $Y$ and $Z$, we have the blob complex $\bc_*(X; a, b, c)$. -If $b = -a$ (the orientation reversal of $a$), then we can glue up blob diagrams on +If $b = a$, then we can glue up blob diagrams on $X$ to get blob diagrams on $X\sgl$. This proves Property \ref{property:gluing-map}, which we restate here in more detail. \textbf{Property \ref{property:gluing-map}.}\emph{ There is a natural chain map \eq{ - \gl: \bigoplus_a \bc_*(X; a, -a, c) \to \bc_*(X\sgl; c\sgl). + \gl: \bigoplus_a \bc_*(X; a, a, c) \to \bc_*(X\sgl; c\sgl). } The sum is over all fields $a$ on $Y$ compatible at their ($n{-}2$-dimensional) boundaries with $c$.