diff -r e88e44347b36 -r 3377d4db80d9 text/intro.tex --- a/text/intro.tex Mon Jul 19 08:42:24 2010 -0700 +++ b/text/intro.tex Mon Jul 19 08:43:02 2010 -0700 @@ -209,12 +209,12 @@ That is, for a fixed $n$-dimensional system of fields $\cC$, the association \begin{equation*} -X \mapsto \bc_*^{\cC}(X) +X \mapsto \bc_*(X; \cC) \end{equation*} is a functor from $n$-manifolds and homeomorphisms between them to chain complexes and isomorphisms between them. \end{property} -As a consequence, there is an action of $\Homeo(X)$ on the chain complex $\bc_*^\cC(X)$; +As a consequence, there is an action of $\Homeo(X)$ on the chain complex $\bc_*(X; \cC)$; this action is extended to all of $C_*(\Homeo(X))$ in Theorem \ref{thm:evaluation} below. The blob complex is also functorial (indeed, exact) with respect to $\cC$, @@ -250,7 +250,7 @@ With field coefficients, the blob complex on an $n$-ball is contractible in the sense that it is homotopic to its $0$-th homology. Moreover, the $0$-th homology of balls can be canonically identified with the vector spaces associated by the system of fields $\cC$ to balls. \begin{equation*} -\xymatrix{\bc_*^{\cC}(B^n) \ar[r]^(0.4){\iso}_(0.4){\text{qi}} & H_0(\bc_*^{\cC}(B^n)) \ar[r]^(0.6)\iso & \cC(B^n)} +\xymatrix{\bc_*(B^n;\cC) \ar[r]^(0.4){\iso}_(0.4){\text{qi}} & H_0(\bc_*(B^n;\cC)) \ar[r]^(0.6)\iso & \cC(B^n)} \end{equation*} \end{property} @@ -271,7 +271,7 @@ by $\cC$. (See \S \ref{sec:local-relations}.) \begin{equation*} -H_0(\bc_*^{\cC}(X)) \iso A^{\cC}(X) +H_0(\bc_*(X;\cC)) \iso A_{\cC}(X) \end{equation*} \end{thm:skein-modules} @@ -281,7 +281,7 @@ The blob complex for a $1$-category $\cC$ on the circle is quasi-isomorphic to the Hochschild complex. \begin{equation*} -\xymatrix{\bc_*^{\cC}(S^1) \ar[r]^(0.4){\iso}_(0.4){\text{qi}} & \HC_*(\cC).} +\xymatrix{\bc_*(S^1;\cC) \ar[r]^(0.4){\iso}_(0.4){\text{qi}} & \HC_*(\cC).} \end{equation*} \end{thm:hochschild} @@ -297,8 +297,7 @@ \newtheorem*{thm:CH}{Theorem \ref{thm:CH}} -\begin{thm:CH}[$C_*(\Homeo(-))$ action]\mbox{}\\ -\vspace{-0.5cm} +\begin{thm:CH}[$C_*(\Homeo(-))$ action] \label{thm:evaluation}% There is a chain map \begin{equation*} @@ -313,10 +312,10 @@ (using the gluing maps described in Property \ref{property:gluing-map}) commutes (up to homotopy). \begin{equation*} \xymatrix@C+2cm{ - \CH{X \bigcup_Y \selfarrow} \otimes \bc_*(X \bigcup_Y \selfarrow) \ar[r]^<<<<<<<<<<<<{\ev_{(X \bigcup_Y \scalebox{0.5}{\selfarrow})}} & \bc_*(X \bigcup_Y \selfarrow) \\ \CH{X} \otimes \bc_*(X) - \ar[r]_{\ev_{X}} \ar[u]^{\gl^{\Homeo}_Y \otimes \gl_Y} & - \bc_*(X) \ar[u]_{\gl_Y} + \ar[r]_{\ev_{X}} \ar[d]^{\gl^{\Homeo}_Y \otimes \gl_Y} & + \bc_*(X) \ar[d]_{\gl_Y} \\ + \CH{X \bigcup_Y \selfarrow} \otimes \bc_*(X \bigcup_Y \selfarrow) \ar[r]^<<<<<<<<<<<<{\ev_{(X \bigcup_Y \scalebox{0.5}{\selfarrow})}} & \bc_*(X \bigcup_Y \selfarrow) } \end{equation*} \end{enumerate} @@ -329,7 +328,7 @@ Further, \begin{thm:CH-associativity} -\item The chain map of Theorem \ref{thm:CH} is associative, in the sense that the following diagram commutes (up to homotopy). +The chain map of Theorem \ref{thm:CH} is associative, in the sense that the following diagram commutes (up to homotopy). \begin{equation*} \xymatrix{ \CH{X} \tensor \CH{X} \tensor \bc_*(X) \ar[r]^<<<<<{\id \tensor \ev_X} \ar[d]^{\compose \tensor \id} & \CH{X} \tensor \bc_*(X) \ar[d]^{\ev_X} \\