diff -r 7a880cdaac70 -r 395bd663e20d text/a_inf_blob.tex --- a/text/a_inf_blob.tex Fri Oct 23 04:12:41 2009 +0000 +++ b/text/a_inf_blob.tex Mon Oct 26 05:39:29 2009 +0000 @@ -25,7 +25,9 @@ new-fangled blob complex $\bc_*^\cF(Y)$. \end{thm} -\begin{proof} +\input{text/smallblobs} + +\begin{proof}[Proof of Theorem \ref{product_thm}] We will use the concrete description of the colimit from Subsection \ref{ss:ncat_fields}. First we define a map @@ -215,3 +217,30 @@ \medskip \nn{still to do: fiber bundles, general maps} +\todo{} +Various citations we might want to make: +\begin{itemize} +\item \cite{MR2061854} McClure and Smith's review article +\item \cite{MR0420610} May, (inter alia, definition of $E_\infty$ operad) +\item \cite{MR0236922,MR0420609} Boardman and Vogt +\item \cite{MR1256989} definition of framed little-discs operad +\end{itemize} + +We now turn to establishing the gluing formula for blob homology, restated from Property \ref{property:gluing} in the Introduction +\begin{itemize} +%\mbox{}% <-- gets the indenting right +\item For any $(n-1)$-manifold $Y$, the blob homology of $Y \times I$ is +naturally an $A_\infty$ category. % We'll write $\bc_*(Y)$ for $\bc_*(Y \times I)$ below. + +\item For any $n$-manifold $X$, with $Y$ a codimension $0$-submanifold of its boundary, the blob homology of $X$ is naturally an +$A_\infty$ module for $\bc_*(Y \times I)$. + +\item For any $n$-manifold $X$, with $Y \cup Y^{\text{op}}$ a codimension +$0$-submanifold of its boundary, the blob homology of $X'$, obtained from +$X$ by gluing along $Y$, is the $A_\infty$ self-tensor product of +$\bc_*(X)$ as an $\bc_*(Y \times I)$-bimodule. +\begin{equation*} +\bc_*(X') \iso \bc_*(X) \Tensor^{A_\infty}_{\mathclap{\bc_*(Y \times I)}} \!\!\!\!\!\!\xymatrix{ \ar@(ru,rd)@<-1ex>[]} +\end{equation*} +\end{itemize} +