diff -r 0488412c274b -r 3feb6e24a518 text/comm_alg.tex --- a/text/comm_alg.tex Tue Mar 30 10:03:48 2010 -0700 +++ b/text/comm_alg.tex Tue Mar 30 15:12:27 2010 -0700 @@ -95,13 +95,13 @@ \end{proof} -\begin{prop} \label{ktcdprop} +\begin{prop} \label{ktchprop} The above maps are compatible with the evaluation map actions of $C_*(\Diff(M))$. \end{prop} \begin{proof} The actions agree in degree 0, and both are compatible with gluing. -(cf. uniqueness statement in \ref{CDprop}.) +(cf. uniqueness statement in \ref{CHprop}.) \end{proof} \medskip @@ -128,7 +128,7 @@ and is zero for $i\ge 2$. \nn{say something about $t$-degrees also matching up?} -By xxxx and \ref{ktcdprop}, +By xxxx and \ref{ktchprop}, the cyclic homology of $k[t]$ is the $S^1$-equivariant homology of $\Sigma^\infty(S^1)$. Up to homotopy, $S^1$ acts by $j$-fold rotation on $\Sigma^j(S^1) \simeq S^1/j$. If $k = \z$, $\Sigma^j(S^1)$ contributes the homology of an infinite lens space: $\z$ in degree