diff -r 987d0010d326 -r 4a988e00468a text/evmap.tex --- a/text/evmap.tex Wed Aug 25 14:20:31 2010 -0700 +++ b/text/evmap.tex Wed Aug 25 22:58:41 2010 -0700 @@ -217,12 +217,12 @@ \end{itemize} Next we define $\btc_*(X)$ to be the total complex of the double complex (denoted $\btc_{**}$) -whose $(i,j)$ entry is $C_i(\BD_j)$, the singular $i$-chains on the space of $j$-blob diagrams. -The horizontal boundary of the double complex, -denoted $\bd_t$, is the singular boundary, and the vertical boundary, denoted $\bd_b$, is +whose $(i,j)$ entry is $C_j(\BD_i)$, the singular $j$-chains on the space of $i$-blob diagrams. +The vertical boundary of the double complex, +denoted $\bd_t$, is the singular boundary, and the horizontal boundary, denoted $\bd_b$, is the blob boundary. -We will regard $\bc_*(X)$ as the subcomplex $\btc_{0*}(X) \sub \btc_{**}(X)$. +We will regard $\bc_*(X)$ as the subcomplex $\btc_{*0}(X) \sub \btc_{**}(X)$. The main result of this subsection is \begin{lemma} \label{lem:bt-btc} @@ -231,6 +231,73 @@ Before giving the proof we need a few preliminary results. +\begin{lemma} \label{bt-contract} +$\btc_*(B^n)$ is contractible (acyclic in positive degrees). +\end{lemma} +\begin{proof} +We will construct a contracting homotopy $h: \btc_*(B^n)\to \btc_*(B^n)$. + +We will assume a splitting $s:H_0(\btc_*(B^n))\to \btc_0(B^n)$ +of the quotient map $q:\btc_0(B^n)\to H_0(\btc_*(B^n))$. +Let $r = s\circ q$. + +For $x\in \btc_{ij}$ with $i\ge 1$ define +\[ + h(x) = e(x) , +\] +where +\[ + e: \btc_{ij}\to\btc_{i+1,j} +\] +adds an outermost blob, equal to all of $B^n$, to the $j$-parameter family of blob diagrams. + +A generator $y\in \btc_{0j}$ is a map $y:P\to \BD_0$, where $P$ is some $j$-dimensional polyhedron. +We define $r(y)\in \btc_{0j}$ to be the constant function $r\circ y : P\to \BD_0$. +Let $c(r(y))\in \btc_{0,j+1}$ be the constant map from the cone of $P$ to $\BD_0$ taking +the same value (i.e.\ $r(y(p))$ for any $p\in P$). +Let $e(y - r(y)) \in \btc_{1j}$ denote the $j$-parameter family of 1-blob diagrams +whose value at $p\in P$ is the blob $B^n$ with label $y(p) - r(y(p))$. +Now define, for $y\in \btc_{0j}$, +\[ + h(y) = e(y - r(y)) + c(r(y)) . +\] +\nn{up to sign, at least} + +We must now verify that $h$ does the job it was intended to do. +For $x\in \btc_{ij}$ with $i\ge 2$ we have +\nn{ignoring signs} +\begin{align*} + \bd h(x) + h(\bd x) &= \bd(e(x)) + e(\bd x) \\ + &= \bd_b(e(x)) + \bd_t(e(x)) + e(\bd_b x) + e(\bd_t x) \\ + &= \bd_b(e(x)) + e(\bd_b x) \quad\quad\text{(since $\bd_t(e(x)) = e(\bd_t x)$)} \\ + &= x . +\end{align*} +For $x\in \btc_{1j}$ we have +\nn{ignoring signs} +\begin{align*} + \bd h(x) + h(\bd x) &= \bd_b(e(x)) + \bd_t(e(x)) + e(\bd_b x - r(\bd_b x)) + c(r(\bd_b x)) + e(\bd_t x) \\ + &= \bd_b(e(x)) + e(\bd_b x) \quad\quad\text{(since $r(\bd_b x) = 0$)} \\ + &= x . +\end{align*} +For $x\in \btc_{0j}$ with $j\ge 1$ we have +\nn{ignoring signs} +\begin{align*} + \bd h(x) + h(\bd x) &= \bd_b(e(x - r(x))) + \bd_t(e(x - r(x))) + \bd_t(c(r(x))) + + e(\bd_t x - r(\bd_t x)) + c(r(\bd_t x)) \\ + &= x - r(x) + \bd_t(c(r(x))) + c(r(\bd_t x)) \\ + &= x - r(x) + r(x) \\ + &= x. +\end{align*} +For $x\in \btc_{00}$ we have +\nn{ignoring signs} +\begin{align*} + \bd h(x) + h(\bd x) &= \bd_b(e(x - r(x))) + \bd_t(c(r(x))) \\ + &= x - r(x) + r(x) - r(x)\\ + &= x - r(x). +\end{align*} +\end{proof} + +