diff -r 38955cc8e1a7 -r 4fc3118df1c8 text/evmap.tex --- a/text/evmap.tex Sun Jul 10 14:52:33 2011 -0600 +++ b/text/evmap.tex Fri Jul 15 14:45:59 2011 -0700 @@ -8,9 +8,9 @@ That is, for each pair of homeomorphic manifolds $X$ and $Y$ we define a chain map \[ - e_{XY} : CH_*(X, Y) \otimes \bc_*(X) \to \bc_*(Y) , + e_{XY} : \CH{X, Y} \otimes \bc_*(X) \to \bc_*(Y) , \] -where $CH_*(X, Y) = C_*(\Homeo(X, Y))$, the singular chains on the space +where $C_*(\Homeo(X, Y))$ is the singular chains on the space of homeomorphisms from $X$ to $Y$. (If $X$ and $Y$ have non-empty boundary, these families of homeomorphisms are required to restrict to a fixed homeomorphism on the boundaries.) @@ -406,32 +406,32 @@ \subsection{Action of \texorpdfstring{$\CH{X}$}{C*(Homeo(M))}} \label{ss:emap-def} -Let $CH_*(X, Y)$ denote $C_*(\Homeo(X \to Y))$, the singular chain complex of +Let $C_*(\Homeo(X \to Y))$ denote the singular chain complex of the space of homeomorphisms between the $n$-manifolds $X$ and $Y$ (any given singular chain extends a fixed homeomorphism $\bd X \to \bd Y$). -We also will use the abbreviated notation $CH_*(X) \deq CH_*(X, X)$. -(For convenience, we will permit the singular cells generating $CH_*(X, Y)$ to be more general +We also will use the abbreviated notation $\CH{X} \deq \CH{X \to X}$. +(For convenience, we will permit the singular cells generating $\CH{X \to Y}$ to be more general than simplices --- they can be based on any cone-product polyhedron (see Remark \ref{blobsset-remark}).) \begin{thm} \label{thm:CH} \label{thm:evaluation}% For $n$-manifolds $X$ and $Y$ there is a chain map \eq{ - e_{XY} : CH_*(X, Y) \otimes \bc_*(X) \to \bc_*(Y) , + e_{XY} : \CH{X \to Y} \otimes \bc_*(X) \to \bc_*(Y) , } well-defined up to homotopy, such that \begin{enumerate} -\item on $CH_0(X, Y) \otimes \bc_*(X)$ it agrees with the obvious action of +\item on $C_0(\Homeo(X \to Y)) \otimes \bc_*(X)$ it agrees with the obvious action of $\Homeo(X, Y)$ on $\bc_*(X)$ described in Property \ref{property:functoriality}, and \item for any compatible splittings $X\to X\sgl$ and $Y\to Y\sgl$, the following diagram commutes up to homotopy \begin{equation*} \xymatrix@C+2cm{ - CH_*(X, Y) \otimes \bc_*(X) + \CH{X \to Y} \otimes \bc_*(X) \ar[r]_(.6){e_{XY}} \ar[d]^{\gl \otimes \gl} & \bc_*(Y)\ar[d]^{\gl} \\ - CH_*(X\sgl, Y\sgl) \otimes \bc_*(X\sgl) \ar[r]_(.6){e_{X\sgl Y\sgl}} & \bc_*(Y\sgl) + \CH{X\sgl, Y\sgl} \otimes \bc_*(X\sgl) \ar[r]_(.6){e_{X\sgl Y\sgl}} & \bc_*(Y\sgl) } \end{equation*} \end{enumerate} @@ -443,14 +443,14 @@ In fact, for $\btc_*$ we get a sharper result: we can omit the ``up to homotopy" qualifiers. -Let $f\in CH_k(X, Y)$, $f:P^k\to \Homeo(X \to Y)$ and $a\in \btc_{ij}(X)$, +Let $f\in C_k(\Homeo(X \to Y))$, $f:P^k\to \Homeo(X \to Y)$ and $a\in \btc_{ij}(X)$, $a:Q^j \to \BD_i(X)$. Define $e_{XY}(f\ot a)\in \btc_{i,j+k}(Y)$ by \begin{align*} e_{XY}(f\ot a) : P\times Q &\to \BD_i(Y) \\ (p,q) &\mapsto f(p)(a(q)) . \end{align*} -It is clear that this agrees with the previously defined $CH_0(X, Y)$ action on $\btc_*$, +It is clear that this agrees with the previously defined $C_0(\Homeo(X \to Y))$ action on $\btc_*$, and it is also easy to see that the diagram in item 2 of the statement of the theorem commutes on the nose. \end{proof} @@ -458,14 +458,14 @@ \begin{thm} \label{thm:CH-associativity} -The $CH_*(X, Y)$ actions defined above are associative. +The $\CH{X \to Y}$ actions defined above are associative. That is, the following diagram commutes up to homotopy: \[ \xymatrix{ -& CH_*(Y, Z) \ot \bc_*(Y) \ar[dr]^{e_{YZ}} & \\ -CH_*(X, Y) \ot CH_*(Y, Z) \ot \bc_*(X) \ar[ur]^{e_{XY}\ot\id} \ar[dr]_{\mu\ot\id} & & \bc_*(Z) \\ -& CH_*(X, Z) \ot \bc_*(X) \ar[ur]_{e_{XZ}} & +& \CH{Y\to Z} \ot \bc_*(Y) \ar[dr]^{e_{YZ}} & \\ +\CH{X \to Y} \ot \CH{Y \to Z} \ot \bc_*(X) \ar[ur]^{e_{XY}\ot\id} \ar[dr]_{\mu\ot\id} & & \bc_*(Z) \\ +& \CH{X \to Z} \ot \bc_*(X) \ar[ur]_{e_{XZ}} & } \] -Here $\mu:CH_*(X, Y) \ot CH_*(Y, Z)\to CH_*(X, Z)$ is the map induced by composition +Here $\mu:\CH{X\to Y} \ot \CH{Y \to Z}\to \CH{X \to Z}$ is the map induced by composition of homeomorphisms. \end{thm} \begin{proof}