diff -r e155c518ce31 -r 538f38ddf395 blob1.tex --- a/blob1.tex Fri Jul 04 05:22:12 2008 +0000 +++ b/blob1.tex Sat Jul 05 20:01:03 2008 +0000 @@ -926,26 +926,33 @@ $A_\infty$-$1$-categories. \end{thm} -Before proving this theorem, we embark upon a long string of definitions. For expository purposes, we begin with the $n=1$ special cases, and define +Before proving this theorem, we embark upon a long string of definitions. +\kevin{the \\kevin macro seems to be truncating text of the left side of the page} +For expository purposes, we begin with the $n=1$ special cases, and define first topological $A_\infty$-algebras, then topological $A_\infty$-categories, and then topological $A_\infty$-modules over these. We then turn to the general $n$ case, defining topological $A_\infty$-$n$-categories and their modules. \nn{Something about duals?} \todo{Explain that we're not making contact with any previous notions for the general $n$ case?} +\kevin{probably we should say something about the relation +to [framed] $E_\infty$ algebras} \begin{defn} \label{defn:topological-algebra}% -A ``topological $A_\infty$-algebra'' $A$ consists of the data +A ``topological $A_\infty$-algebra'' $A$ consists of the following data. \begin{enumerate} -\item for each $1$-manifold $J$ diffeomorphic to the standard interval $I=\left[0,1\right]$, a complex of vector spaces $A(J)$, +\item For each $1$-manifold $J$ diffeomorphic to the standard interval +$I=\left[0,1\right]$, a complex of vector spaces $A(J)$. % either roll functoriality into the evaluation map -\item and for each pair of intervals $J,J'$ an `evaluation' chain map $\ev_{J \to J'} : \CD{J \to J'} \tensor A(J) \to A(J')$, -\item and a gluing map $\gl_{J,J'} : A(J) \tensor A(J') \to A(J \cup J')$, +\item For each pair of intervals $J,J'$ an `evaluation' chain map +$\ev_{J \to J'} : \CD{J \to J'} \tensor A(J) \to A(J')$. +\item For each decomposition of intervals $J = J'\cup J''$, +a gluing map $\gl_{J,J'} : A(J') \tensor A(J'') \to A(J)$. % or do it as two separate pieces of data %\item along with an `evaluation' chain map $\ev_J : \CD{J} \tensor A(J) \to A(J)$, %\item for each diffeomorphism $\phi : J \to J'$, an isomorphism $A(\phi) : A(J) \isoto A(J')$, %\item and for each pair of intervals $J,J'$ a gluing map $\gl_{J,J'} : A(J) \tensor A(J') \to A(J \cup J')$, \end{enumerate} -satisfying the following conditions. +This data is required to satisfy the following conditions. \begin{itemize} \item The evaluation chain map is associative, in that the diagram \begin{equation*} @@ -1018,6 +1025,8 @@ \CD{J \to J'} \tensor C_*(\Maps(J \to M)) & \to C_*(\Diff(J \to J') \times \Maps(J \to M)) \\ & \to C_*(\Maps(J' \to M)), \end{align*} where the first map is the product of singular chains, and the second is precomposition by the inverse of a diffeomorphism\todo{inverse, really?!}, +\kevin{I think that's fine. If we recoil at taking inverses, +we should use smooth maps instead of diffeos} \item $\gl_{J,J'} : A(J) \tensor A(J')$ takes the product of singular chains, then glues maps to $M$ together. \end{enumerate} The associativity conditions are trivially satisfied.