diff -r d5caffd01b72 -r 61541264d4b3 text/evmap.tex --- a/text/evmap.tex Thu Aug 11 13:26:00 2011 -0700 +++ b/text/evmap.tex Thu Aug 11 13:54:38 2011 -0700 @@ -123,7 +123,7 @@ Let $g_j = f_1\circ f_2\circ\cdots\circ f_j$. Let $g$ be the last of the $g_j$'s. Choose the sequence $\bar{f}_j$ so that -$g(B)$ is contained is an open set of $\cV_1$ and +$g(B)$ is contained in an open set of $\cV_1$ and $g_{j-1}(|f_j|)$ is also contained in an open set of $\cV_1$. There are 1-blob diagrams $c_{ij} \in \bc_1(B)$ such that $c_{ij}$ is compatible with $\cV_1$ @@ -325,7 +325,7 @@ \end{proof} For $S\sub X$, we say that $a\in \btc_k(X)$ is {\it supported on $S$} -if there exists $a'\in \btc_k(S)$ +if there exist $a'\in \btc_k(S)$ and $r\in \btc_0(X\setmin S)$ such that $a = a'\bullet r$. \newcommand\sbtc{\btc^{\cU}} @@ -385,7 +385,7 @@ Now let $b$ be a generator of $C_2$. If $\cU$ is fine enough, there is a disjoint union of balls $V$ on which $b + h_1(\bd b)$ is supported. -Since $\bd(b + h_1(\bd b)) = s(\bd b) \in \bc_2(X)$, we can find +Since $\bd(b + h_1(\bd b)) = s(\bd b) \in \bc_1(X)$, we can find $s(b)\in \bc_2(X)$ with $\bd(s(b)) = \bd(b + h_1(\bd b))$ (by Corollary \ref{disj-union-contract}). By Lemmas \ref{bt-contract} and \ref{btc-prod}, we can now find $h_2(b) \in \btc_3(X)$, also supported on $V$, such that $\bd(h_2(b)) = s(b) - b - h_1(\bd b)$