diff -r d5caffd01b72 -r 61541264d4b3 text/hochschild.tex --- a/text/hochschild.tex Thu Aug 11 13:26:00 2011 -0700 +++ b/text/hochschild.tex Thu Aug 11 13:54:38 2011 -0700 @@ -293,7 +293,7 @@ $\widetilde{q} \in \ker(C \tensor E \tensor C \to E)$. Further, \begin{align*} -\hat{g}(\widetilde{q}) & = \sum_i \left(a_i \tensor g(\widetilde{q_i}) \tensor b_i\right) - 1 \tensor \left(\sum_i a_i g(\widetilde{q_i}\right) b_i) \tensor 1 \\ +\hat{g}(\widetilde{q}) & = \sum_i \left(a_i \tensor g(\widetilde{q_i}) \tensor b_i\right) - 1 \tensor \left(\sum_i a_i g(\widetilde{q_i}) b_i\right) \tensor 1 \\ & = q - 0 \end{align*} (here we used that $g$ is a map of $C$-$C$ bimodules, and that $\sum_i a_i q_i b_i = 0$). @@ -341,7 +341,7 @@ $j$-th term have labelled points $d_{j,i}$ to the left of $*$, $m_j$ at $*$, and $d_{j,i}'$ to the right of $*$, and there are labels $c_i$ at the labeled points outside the blob. We know that -$$\sum_j d_{j,1} \tensor \cdots \tensor d_{j,k_j} \tensor m_j \tensor d_{j,1}' \tensor \cdots \tensor d_{j,k'_j}' \in \ker(\DirectSum_{k,k'} C^{\tensor k} \tensor M \tensor C^{\tensor k'} \tensor \to M),$$ +$$\sum_j d_{j,1} \tensor \cdots \tensor d_{j,k_j} \tensor m_j \tensor d_{j,1}' \tensor \cdots \tensor d_{j,k'_j}' \in \ker(\DirectSum_{k,k'} C^{\tensor k} \tensor M \tensor C^{\tensor k'} \to M),$$ and so \begin{align*} \ev(\bdy y) & = \sum_j m_j d_{j,1}' \cdots d_{j,k'_j}' c_1 \cdots c_k d_{j,1} \cdots d_{j,k_j} \\