diff -r 4fd165bc745b -r 85cebbd771b5 text/ncat.tex --- a/text/ncat.tex Wed Aug 10 15:31:45 2011 -0700 +++ b/text/ncat.tex Wed Aug 10 16:18:11 2011 -0700 @@ -1667,6 +1667,7 @@ then for each marked $n$-ball $M=(B,N)$ and $c\in \cC(\bd B \setminus N)$, the set $\cM(M; c)$ should be an object in that category. \begin{lem}[Boundary from domain and range] +\label{lem:module-boundary} {Let $H = M_1 \cup_E M_2$, where $H$ is a marked $k{-}1$-hemisphere ($1\le k\le n$), $M_i$ is a marked $k{-}1$-ball, and $E = M_1\cap M_2$ is a marked $k{-}2$-hemisphere. Let $\cM(M_1) \times_{\cM(E)} \cM(M_2)$ denote the fibered product of the @@ -1677,7 +1678,32 @@ \] which is natural with respect to the actions of homeomorphisms.} \end{lem} -Again, this is in exact analogy with Lemma \ref{lem:domain-and-range}. +Again, this is in exact analogy with Lemma \ref{lem:domain-and-range}, and illustrated in Figure \ref{fig:module-boundary}. +\begin{figure}[t] +\tikzset{marked/.style={line width=5pt}} + +\begin{equation*} +\begin{tikzpicture}[baseline=0] +\coordinate (a) at (0,1); +\coordinate (b) at (4,1); +\draw[marked] (a) arc (180:0:2); +\draw (b) -- (a); +\node at (2,2) {$M_1$}; + +\draw (0,0) node[fill, circle] {} -- (4,0) node[fill,circle] {}; +\node at (-0.6,0) {$E$}; + +\draw[marked] (0,-1) arc(-180:0:2); +\draw (4,-1) -- (0,-1); +\node at (2,-2) {$M_2$}; +\end{tikzpicture} +\qquad \qquad \qquad +\begin{tikzpicture}[baseline=0] +\draw[marked] (0,0) node {$H$} circle (2); +\end{tikzpicture} +\end{equation*}\caption{The marked hemispheres and marked balls from Lemma \ref{lem:module-boundary}.} +\label{fig:module-boundary} +\end{figure} Let $\cl\cM(H)\trans E$ denote the image of $\gl_E$. We will refer to elements of $\cl\cM(H)\trans E$ as ``splittable along $E$" or ``transverse to $E$".