diff -r 16efb5711c6f -r 8c2c330e87f2 text/intro.tex --- a/text/intro.tex Wed Dec 16 19:30:13 2009 +0000 +++ b/text/intro.tex Thu Dec 17 04:37:12 2009 +0000 @@ -183,7 +183,7 @@ \end{equation*} \end{property} -Here $\CH{X}$ is the singular chain complex of the space of homeomorphisms of $X$, fixed on $\bdy X$. +In the following $\CH{X}$ is the singular chain complex of the space of homeomorphisms of $X$, fixed on $\bdy X$. \begin{property}[$C_*(\Homeo(-))$ action] \label{property:evaluation}% There is a chain map @@ -191,19 +191,10 @@ \ev_X: \CH{X} \tensor \bc_*(X) \to \bc_*(X). \end{equation*} -Restricted to $C_0(\Homeo(X))$ this is just the action of homeomorphisms described in Property \ref{property:functoriality}. Further, for -any codimension $1$-submanifold $Y \subset X$ dividing $X$ into $X_1 \cup_Y X_2$, the following diagram -(using the gluing maps described in Property \ref{property:gluing-map}) commutes. -\begin{equation*} -\xymatrix{ - \CH{X} \otimes \bc_*(X) \ar[r]^{\ev_X} & \bc_*(X) \\ - \CH{X_1} \otimes \CH{X_2} \otimes \bc_*(X_1) \otimes \bc_*(X_2) - \ar@/_4ex/[r]_{\ev_{X_1} \otimes \ev_{X_2}} \ar[u]^{\gl^{\Homeo}_Y \otimes \gl_Y} & - \bc_*(X_1) \otimes \bc_*(X_2) \ar[u]_{\gl_Y} -} -\end{equation*} +Restricted to $C_0(\Homeo(X))$ this is just the action of homeomorphisms described in Property \ref{property:functoriality}. \nn{should probably say something about associativity here (or not?)} -Further, for + +For any codimension $0$-submanifold $Y \sqcup Y^\text{op} \subset \bdy X$ the following diagram (using the gluing maps described in Property \ref{property:gluing-map}) commutes. \begin{equation*} @@ -214,8 +205,14 @@ \bc_*(X) \ar[u]_{\gl_Y} } \end{equation*} + +\nn{unique up to homotopy?} \end{property} +Since the blob complex is functorial in the manifold $X$, we can use this to build a chain map +$$ev_{X \to Y} : \CH{X \to Y} \tensor \bc_*(X) \to \bc_*(Y)$$ +satisfying corresponding conditions. + In \S \ref{sec:ncats} we introduce the notion of topological $n$-categories, from which we can construct systems of fields, as well as the notion of an $A_\infty$ $n$-category. \begin{property}[Blob complexes of (products with) balls form an $A_\infty$ $n$-category]