diff -r 9bb7d314c694 -r 9b8b474e272c text/ncat.tex --- a/text/ncat.tex Fri May 28 13:06:58 2010 -0700 +++ b/text/ncat.tex Fri May 28 15:20:11 2010 -0700 @@ -584,10 +584,10 @@ \begin{example}[Blob complexes of balls (with a fiber)] \rm \label{ex:blob-complexes-of-balls} -Fix an $m$-dimensional manifold $F$ and system of fields $\cE$. -We will define an $A_\infty$ $(n-m)$-category $\cC$. -When $X$ is a $k$-ball or $k$-sphere, with $k0} (-1)^i (D_0\to \cdots \to \widehat{D_i} \to \cdots \to D_l)$ (those parts of the simplicial boundary which retain $D_0$), $\bd_0 \olD = (D_1 \to \cdots \to D_l)$, @@ -1163,12 +1164,12 @@ \] where $(\psi(D_0)[l])^*$ denotes the linear dual. The boundary is given by -\begin{eqnarray*} - (\bd f)(\olD\ot m\ot\cbar\ot n) &=& f(\olD\ot\bd(m\ot\cbar)\ot n) + - f(\olD\ot m\ot\cbar\ot \bd n) + \\ - & & \;\; f((\bd_+ \olD)\ot m\ot\cbar\ot n) + f((\bd_0 \olD)\ot \rho(m\ot\cbar\ot n)) . -\end{eqnarray*} -(Again, we are ignoring signs.) \nn{put signs in} +\begin{align} +\label{eq:tensor-product-boundary} + (-1)^{\deg f +1} (\bd f)(\olD\ot m\ot\cbar\ot n) & = f((\bd_0 \olD)\ot \rho(m\ot\cbar\ot n)) + f((\bd_+ \olD)\ot m\ot\cbar\ot n) + \\ + & \qquad + (-1)^{l} f(\olD\ot\bd m\ot\cbar \ot n) + (-1)^{l + \deg m} f(\olD\ot m\ot\bd \cbar \ot n) + \notag \\ + & \qquad + (-1)^{l + \deg m + \deg \cbar} f(\olD\ot m\ot\cbar\ot \bd n). \notag +\end{align} Next we define the dual module $(_\cC\cN)^*$. This will depend on a choice of interval $J$, just as the tensor product did. @@ -1188,7 +1189,7 @@ as some sort of morphism $\cM_\cC \to (_\cC\cN)^*$. Let $f\in (\cM_\cC\ot {_\cC\cN})^*$. Let $\olD = (D_0\cdots D_l)$ be a chain of subdivisions with $D_0 = [J = I_1\cup\cdots\cup I_m]$. -Recall that $(_\cC\cN)^*(I_1\cup\cdots\cup I_{p-1}) = (_\cC\cN(I_p))^*$. +Recall that for any subdivision $J = I_1\cup\cdots\cup I_p$, $(_\cC\cN)^*(I_1\cup\cdots\cup I_{p-1}) = (_\cC\cN(I_p))^*$. Then for each such $\olD$ we have a degree $l$ map \begin{eqnarray*} \cM(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{p-1}) &\to& (_\cC\cN)^*(I_1\cup\cdots\cup I_{p-1}) \\ @@ -1232,12 +1233,14 @@ For fixed $D_0$ and $D_1$, let $\cbar = \cbar'\ot\cbar''$, where $\cbar'$ corresponds to the subintervals of $D_0$ which map to $D_1$ and $\cbar''$ corresponds to the subintervals which are dropped off the right side. (Either $\cbar'$ or $\cbar''$ might be empty.) -Translating from the boundary map for $(\cM_\cC\ot {_\cC\cN})^*$ \nn{give ref?}, +\nn{surely $\cbar'$ can't be empy: we don't allow $D_1$ to be empty.} +Translating from the boundary map for $(\cM_\cC\ot {_\cC\cN})^*$ appearing in Equation \eqref{eq:tensor-product-boundary}, we have \begin{eqnarray*} (\bd g)(\olD\ot x \ot \cbar) &=& \bd(g(\olD\ot x \ot \cbar)) + g(\olD\ot\bd(x\ot\cbar)) + \\ & & \;\; g((\bd_+\olD)\ot x\ot\cbar) + \gl(g((\bd_0\olD)\ot x\ot\cbar')\ot\cbar'') . \end{eqnarray*} +\nn{put in signs, rearrange terms to match order in previous formulas} Here $\gl$ denotes the module action in $\cY_\cC$. This completes the definition of $\hom_\cC(\cX_\cC \to \cY_\cC)$. @@ -1538,44 +1541,4 @@ \end{align*} where the first map is the product of singular chains, and the second is precomposition by the inverse of a diffeomorphism. -We now give two motivating examples, as theorems constructing other homological systems of fields, - - -\begin{thm} -For a fixed target space $X$, `chains of maps to $X$' is a homological system of fields $\Xi$, defined as -\begin{equation*} -\Xi(M) = \CM{M}{X}. -\end{equation*} -\end{thm} - -\begin{thm} -Given an $n$-dimensional system of fields $\cF$, and a $k$-manifold $F$, there is an $n-k$ dimensional homological system of fields $\cF^{\times F}$ defined by -\begin{equation*} -\cF^{\times F}(M) = \cB_*(M \times F, \cF). -\end{equation*} -\end{thm} -We might suggestively write $\cF^{\times F}$ as $\cB_*(F \times [0,1]^b, \cF)$, interpreting this as an (undefined!) $A_\infty$ $b$-category, and then as the resulting homological system of fields, following a recipe analogous to that given above for $A_\infty$ $1$-categories. - - -In later sections, we'll prove the following two unsurprising theorems, about the (as-yet-undefined) blob homology of these homological systems of fields. - - -\begin{thm} -\begin{equation*} -\cB_*(M, \Xi) \iso \Xi(M) -\end{equation*} -\end{thm} - -\begin{thm}[Product formula] -Given a $b$-manifold $B$, an $f$-manifold $F$ and a $b+f$ dimensional system of fields, -there is a quasi-isomorphism -\begin{align*} -\cB_*(B \times F, \cF) & \quismto \cB_*(B, \cF^{\times F}) -\end{align*} -\end{thm} - -\begin{question} -Is it possible to compute the blob homology of a non-trivial bundle in terms of the blob homology of its fiber? -\end{question} - \hrule