diff -r f5af4f863a8f -r a80cc9f9a65b text/a_inf_blob.tex --- a/text/a_inf_blob.tex Thu Apr 26 06:57:24 2012 -0600 +++ b/text/a_inf_blob.tex Fri Apr 27 22:37:14 2012 -0700 @@ -7,14 +7,14 @@ complex. \begin{defn} The blob complex $\bc_*(M;\cC)$ of an $n$-manifold $M$ with coefficients in -an $A_\infty$ $n$-category $\cC$ is the homotopy colimit $\cl{\cC}(M)$ of \S\ref{ss:ncat_fields}. +an $A_\infty$ $n$-category $\cC$ is the homotopy colimit $\colimit{\cC}(M)$ of \S\ref{ss:ncat_fields}. \end{defn} We will show below in Corollary \ref{cor:new-old} that when $\cC$ is obtained from a system of fields $\cE$ as the blob complex of an $n$-ball (see Example \ref{ex:blob-complexes-of-balls}), -$\cl{\cC}(M)$ is homotopy equivalent to +$\colimit{\cC}(M)$ is homotopy equivalent to our original definition of the blob complex $\bc_*(M;\cE)$. %\medskip @@ -47,7 +47,7 @@ Then there is a homotopy equivalence between ``old-fashioned" (blob diagrams) and ``new-fangled" (hocolimit) blob complexes \[ - \cB_*(Y \times F) \htpy \cl{\cC_F}(Y) . + \cB_*(Y \times F) \htpy \colimit{\cC_F}(Y) . \]\end{thm} \begin{proof} @@ -55,7 +55,7 @@ First we define a map \[ - \psi: \cl{\cC_F}(Y) \to \bc_*(Y\times F;\cE) . + \psi: \colimit{\cC_F}(Y) \to \bc_*(Y\times F;\cE) . \] On 0-simplices of the hocolimit we just glue together the various blob diagrams on $X_i\times F$ @@ -67,7 +67,7 @@ In the other direction, we will define (in the next few paragraphs) a subcomplex $G_*\sub \bc_*(Y\times F;\cE)$ and a map \[ - \phi: G_* \to \cl{\cC_F}(Y) . + \phi: G_* \to \colimit{\cC_F}(Y) . \] Given a decomposition $K$ of $Y$ into $k$-balls $X_i$, let $K\times F$ denote the corresponding @@ -81,9 +81,9 @@ projections to $Y$ are contained in some disjoint union of balls.) Note that the image of $\psi$ is equal to $G_*$. -We will define $\phi: G_* \to \cl{\cC_F}(Y)$ using the method of acyclic models. +We will define $\phi: G_* \to \colimit{\cC_F}(Y)$ using the method of acyclic models. Let $a$ be a generator of $G_*$. -Let $D(a)$ denote the subcomplex of $\cl{\cC_F}(Y)$ generated by all $(b, \ol{K})$ +Let $D(a)$ denote the subcomplex of $\colimit{\cC_F}(Y)$ generated by all $(b, \ol{K})$ where $b$ is a generator appearing in an iterated boundary of $a$ (this includes $a$ itself) and $b$ splits along $K_0\times F$. @@ -198,7 +198,7 @@ \end{proof} We are now in a position to apply the method of acyclic models to get a map -$\phi:G_* \to \cl{\cC_F}(Y)$. +$\phi:G_* \to \colimit{\cC_F}(Y)$. We may assume that $\phi(a)$ has the form $(a, K) + r$, where $(a, K)$ is a 0-simplex and $r$ is a sum of simplices of dimension 1 or higher. @@ -213,7 +213,7 @@ We have $\psi(r) = 0$ since $\psi$ is zero on $(\ge 1)$-simplices. Second, $\phi\circ\psi$ is the identity up to homotopy by another argument based on the method of acyclic models. -To each generator $(b, \ol{K})$ of $\cl{\cC_F}(Y)$ we associate the acyclic subcomplex $D(b)$ defined above. +To each generator $(b, \ol{K})$ of $\colimit{\cC_F}(Y)$ we associate the acyclic subcomplex $D(b)$ defined above. Both the identity map and $\phi\circ\psi$ are compatible with this collection of acyclic subcomplexes, so by the usual method of acyclic models argument these two maps are homotopic. @@ -227,7 +227,7 @@ a $j$-ball $X$ is either $\cE(X\times Y\times F)$ (if $j