diff -r 62a402dd3e6e -r b138ee4a5938 text/evmap.tex --- a/text/evmap.tex Thu Sep 23 18:10:35 2010 -0700 +++ b/text/evmap.tex Fri Sep 24 15:32:55 2010 -0700 @@ -223,7 +223,6 @@ \item For balls $B$, the map $U(B) \to \BD_1(B)$, $u\mapsto (B, u, \emptyset)$, is continuous, where $U(B) \sub \bc_0(B)$ inherits its topology from $\bc_0(B)$ and the topology on $\bc_0(B)$ comes from the generating set $\BD_0(B)$. -\nn{don't we need to say more to specify a topology on an $\infty$-dimensional vector space} \end{itemize} We can summarize the above by saying that in the typical continuous family @@ -277,7 +276,7 @@ whose value at $p\in P$ is the blob $B^n$ with label $y(p) - r(y(p))$. Now define, for $y\in \btc_{0j}$, \[ - h(y) = e(y - r(y)) + c(r(y)) . + h(y) = e(y - r(y)) - c(r(y)) . \] We must now verify that $h$ does the job it was intended to do. @@ -290,22 +289,21 @@ \end{align*} For $x\in \btc_{1j}$ we have \begin{align*} - \bd h(x) + h(\bd x) &= \bd_b(e(x)) + \bd_t(e(x)) + e(\bd_b x - r(\bd_b x)) + c(r(\bd_b x)) - e(\bd_t x) && \\ + \bd h(x) + h(\bd x) &= \bd_b(e(x)) + \bd_t(e(x)) + e(\bd_b x - r(\bd_b x)) - c(r(\bd_b x)) - e(\bd_t x) && \\ &= \bd_b(e(x)) + e(\bd_b x) && \text{(since $r(\bd_b x) = 0$)} \\ &= x . && \end{align*} For $x\in \btc_{0j}$ with $j\ge 1$ we have \begin{align*} - \bd h(x) + h(\bd x) &= \bd_b(e(x - r(x))) - \bd_t(e(x - r(x))) - \bd_t(c(r(x))) + - e(\bd_t x - r(\bd_t x)) + c(r(\bd_t x)) \\ - &= x - r(x) - \bd_t(c(r(x))) + c(r(\bd_t x)) \\ + \bd h(x) + h(\bd x) &= \bd_b(e(x - r(x))) - \bd_t(e(x - r(x))) + \bd_t(c(r(x))) + + e(\bd_t x - r(\bd_t x)) - c(r(\bd_t x)) \\ + &= x - r(x) + \bd_t(c(r(x))) - c(r(\bd_t x)) \\ &= x - r(x) + r(x) \\ &= x. \end{align*} Here we have used the fact that $\bd_b(c(r(x))) = 0$ since $c(r(x))$ is a $0$-blob diagram, -as well as that $\bd_t(e(r(x))) = e(r(\bd_t x))$ -\nn{explain why this is true?} -and $c(r(\bd_t x)) - \bd_t(c(r(x))) = r(x)$ \nn{explain?}. +as well as that $\bd_t(e(r(x))) = e(r(\bd_t x))$ +and $\bd_t(c(r(x))) - c(r(\bd_t x)) = r(x)$. For $x\in \btc_{00}$ we have \begin{align*}