diff -r ace8913f02a5 -r cd66f8e3ae44 text/intro.tex --- a/text/intro.tex Tue Jul 27 15:01:38 2010 -0400 +++ b/text/intro.tex Tue Jul 27 15:04:46 2010 -0700 @@ -89,11 +89,12 @@ \begin{tikzpicture}[align=center,line width = 1.5pt] \newcommand{\xa}{2} -\newcommand{\xb}{10} +\newcommand{\xb}{8} \newcommand{\ya}{14} \newcommand{\yb}{10} \newcommand{\yc}{6} +\node[box] at (-4,\yb) (tC) {$C$ \\ a `traditional' \\ weak $n$-category}; \node[box] at (\xa,\ya) (C) {$\cC$ \\ a topological \\ $n$-category}; \node[box] at (\xb,\ya) (A) {$\underrightarrow{\cC}(M)$ \\ the (dual) TQFT \\ Hilbert space}; \node[box] at (\xa,\yb) (FU) {$(\cF, \cU)$ \\ fields and\\ local relations}; @@ -109,10 +110,14 @@ \draw[->] (FU) -- node[right=10pt] {$\cF(M)/\cU$} (A); -\draw[->] (C) -- node[left=10pt] { - Example \ref{ex:traditional-n-categories(fields)} \\ and \S \ref{ss:ncat_fields} +\draw[->] (tC) -- node[above] {Example \ref{ex:traditional-n-categories(fields)}} (FU); + +\draw[->] (C.-100) -- node[left] { + \S \ref{ss:ncat_fields} %$\displaystyle \cF(M) = \DirectSum_{c \in\cell(M)} \cC(c)$ \\ $\displaystyle \cU(B) = \DirectSum_{c \in \cell(B)} \ker \ev: \cC(c) \to \cC(B)$ - } (FU); + } (FU.100); +\draw[->] (C) -- node[above left=3pt] {restrict to \\ standard balls} (tC); +\draw[->] (FU.80) -- node[right] {restrict \\ to balls} (C.-80); \draw[->] (BC) -- node[left] {$H_0$} node[right] {c.f. Theorem \ref{thm:skein-modules}} (A); \draw[->] (FU) -- node[left] {blob complex \\ for balls} (Cs); @@ -205,7 +210,7 @@ Here $\bc_0$ is linear combinations of fields on $W$, $\bc_1$ is linear combinations of local relations on $W$, $\bc_2$ is linear combinations of relations amongst relations on $W$, -and so on. +and so on. We now have a short exact sequence of chain complexes relating resolutions of the link $L$ (c.f. Lemma \ref{lem:hochschild-exact} which shows exactness with respect to boundary conditions in the context of Hochschild homology). \subsection{Formal properties} @@ -226,10 +231,8 @@ As a consequence, there is an action of $\Homeo(X)$ on the chain complex $\bc_*(X; \cF)$; this action is extended to all of $C_*(\Homeo(X))$ in Theorem \ref{thm:evaluation} below. -The blob complex is also functorial (indeed, exact) with respect to $\cF$, +The blob complex is also functorial with respect to $\cF$, although we will not address this in detail here. -\nn{KW: what exactly does ``exact in $\cF$" mean? -Do we mean a similar statement for module labels?} \begin{property}[Disjoint union] \label{property:disjoint-union}