diff -r c06a899bd1f0 -r d3b05641e7ca text/intro.tex --- a/text/intro.tex Sun Jul 04 13:15:03 2010 -0600 +++ b/text/intro.tex Sun Jul 04 23:32:48 2010 -0600 @@ -38,7 +38,7 @@ and establishes some of its properties. There are many alternative definitions of $n$-categories, and part of our difficulty defining the blob complex is simply explaining what we mean by an ``$n$-category with strong duality'' as one of the inputs. -At first we entirely avoid this problem by introducing the notion of a `system of fields', and define the blob complex +At first we entirely avoid this problem by introducing the notion of a ``system of fields", and define the blob complex associated to an $n$-manifold and an $n$-dimensional system of fields. We sketch the construction of a system of fields from a $1$-category or from a pivotal $2$-category. @@ -50,7 +50,7 @@ We call these ``topological $n$-categories'', to differentiate them from previous versions. Moreover, we find that we need analogous $A_\infty$ $n$-categories, and we define these as well following very similar axioms. -The basic idea is that each potential definition of an $n$-category makes a choice about the `shape' of morphisms. +The basic idea is that each potential definition of an $n$-category makes a choice about the ``shape" of morphisms. We try to be as lax as possible: a topological $n$-category associates a vector space to every $B$ homeomorphic to the $n$-ball. These vector spaces glue together associatively, and we require that there is an action of the homeomorphism groupoid. For an $A_\infty$ $n$-category, we associate a chain complex instead of a vector space to each such $B$ and ask that the action of @@ -61,10 +61,10 @@ In \S \ref{ss:ncat_fields} we explain how to construct a system of fields from a topological $n$-category (using a colimit along cellulations of a manifold), and in \S \ref{sec:ainfblob} give an alternative definition of the blob complex for an $A_\infty$ $n$-category on an $n$-manifold (analogously, using a homotopy colimit). -Using these definitions, we show how to use the blob complex to `resolve' any topological $n$-category as an +Using these definitions, we show how to use the blob complex to ``resolve" any topological $n$-category as an $A_\infty$ $n$-category, and relate the first and second definitions of the blob complex. We use the blob complex for $A_\infty$ $n$-categories to establish important properties of the blob complex (in both variants), -in particular the `gluing formula' of Theorem \ref{thm:gluing} below. +in particular the ``gluing formula" of Theorem \ref{thm:gluing} below. The relationship between all these ideas is sketched in Figure \ref{fig:outline}. @@ -115,7 +115,7 @@ thought of as a topological $n$-category, in terms of the topology of $M$. Section \S \ref{sec:deligne} states (and in a later edition of this paper, hopefully proves) a higher dimensional generalization of the Deligne conjecture (that the little discs operad acts on Hochschild cohomology) in terms of the blob complex. -The appendixes prove technical results about $\CH{M}$ and the `small blob complex', +The appendixes prove technical results about $\CH{M}$ and the ``small blob complex", and make connections between our definitions of $n$-categories and familiar definitions for $n=1$ and $n=2$, as well as relating the $n=1$ case of our $A_\infty$ $n$-categories with usual $A_\infty$ algebras. @@ -436,7 +436,7 @@ The paper ``Skein homology'' \cite{MR1624157} has similar motivations, and it may be interesting to investigate if there is a connection with the material here. -Many results in Hochschild homology can be understood `topologically' via the blob complex. +Many results in Hochschild homology can be understood ``topologically" via the blob complex. For example, we expect that the shuffle product on the Hochschild homology of a commutative algebra $A$ (see \cite[\S 4.2]{MR1600246}) simply corresponds to the gluing operation on $\bc_*(S^1 \times [0,1], A)$, but haven't investigated the details.