diff -r 3feb6e24a518 -r d42ae7a54143 text/deligne.tex --- a/text/deligne.tex Tue Mar 30 15:12:27 2010 -0700 +++ b/text/deligne.tex Tue Mar 30 16:48:16 2010 -0700 @@ -32,7 +32,7 @@ \end{eqnarray*} See Figure \ref{delfig1}. \begin{figure}[!ht] -$$\mathfig{.9}{tempkw/delfig1}$$ +$$\mathfig{.9}{deligne/intervals}$$ \caption{A fat graph}\label{delfig1}\end{figure} We can think of a fat graph as encoding a sequence of surgeries, starting at the bottommost interval @@ -53,7 +53,7 @@ It should now be clear how to generalize this to higher dimensions. In the sequence-of-surgeries description above, we never used the fact that the manifolds involved were 1-dimensional. -Thus we can define a $n$-dimensional fat graph to sequence of general surgeries +Thus we can define a $n$-dimensional fat graph to be a sequence of general surgeries on an $n$-manifold. More specifically, the $n$-dimensional fat graph operad can be thought of as a sequence of general surgeries @@ -61,7 +61,7 @@ $f_i: R_i\cup N_i \to R_{i+1}\cup M_{i+1}$. (See Figure \ref{delfig2}.) \begin{figure}[!ht] -$$\mathfig{.9}{tempkw/delfig2}$$ +$$\mathfig{.9}{deligne/manifolds}$$ \caption{A fat graph}\label{delfig2}\end{figure} The components of the $n$-dimensional fat graph operad are indexed by tuples $(\overline{M}, \overline{N}) = ((M_0,\ldots,M_k), (N_0,\ldots,N_k))$. @@ -82,9 +82,9 @@ \label{prop:deligne} There is a collection of maps \begin{eqnarray*} - C_*(FG^n_{\overline{M}, \overline{N}})\otimes \mapinf(\bc_*(M_0), \bc_*(N_0))\otimes\cdots\otimes -\mapinf(\bc_*(M_{k-1}), \bc_*(N_{k-1})) & \\ - & \hspace{-11em}\to \mapinf(\bc_*(M_k), \bc_*(N_k)) + C_*(FG^n_{\overline{M}, \overline{N}})\otimes \mapinf(\bc_*(M_1), \bc_*(N_1))\otimes\cdots\otimes +\mapinf(\bc_*(M_{k}), \bc_*(N_{k})) & \\ + & \hspace{-11em}\to \mapinf(\bc_*(M_0), \bc_*(N_0)) \end{eqnarray*} which satisfy an operad type compatibility condition. \nn{spell this out} \end{prop}