diff -r 9eae41b8f7d7 -r d45e55d25dff talks/20091108-Riverside/riverside1.tex --- a/talks/20091108-Riverside/riverside1.tex Sat Oct 31 19:49:59 2009 +0000 +++ b/talks/20091108-Riverside/riverside1.tex Sun Nov 01 01:56:59 2009 +0000 @@ -46,14 +46,118 @@ \begin{frame}{What is \emph{blob homology}?} \begin{block}{} -The blob complex takes an $n$-manifold $M$ and an `$n$-category with strong duality' $\cC$ and produces a chain complex, $\bc_*(M; \cC)$. +The blob complex takes an $n$-manifold $\cM$ and an `$n$-category with strong duality' $\cC$ and produces a chain complex, $\bc_*(\cM; \cC)$. +\end{block} +\tikzstyle{description}=[gray, font=\tiny, text centered, text width=2cm] +\begin{tikzpicture}[] +\setbeamercovered{% + transparent=5, +% still covered={\opaqueness<1>{15}\opaqueness<2>{10}\opaqueness<3>{5}\opaqueness<4->{2}}, + again covered={\opaqueness<1->{50}} +} + +\node[red] (blobs) at (0,0) {$H(\bc_*(\cM; \cC))$}; +\uncover<1>{ +\node[blue] (skein) at (4,0) {$A(\cM; \cC)$}; +\node[below=5pt, description] (skein-label) at (skein) {(the usual TQFT Hilbert space)}; +\path[->](blobs) edge node[above] {$*= 0$} (skein); +} + +\uncover<2>{ + \node[blue] (hoch) at (0,3) {$HH_*(\cC)$}; + \node[right=20pt, description] (hoch-label) at (hoch) {(the Hochschild homology)}; + \path[->](blobs) edge node[right] {$\cM = S^1$} (hoch); +} + +\uncover<3>{ + \node[blue] (comm) at (-2.4, -1.8) {$H_*(\Delta^\infty(\cM), k)$}; + \node[description, below=5pt] (comm-label) at (comm) {(singular homology of the infinite configuration space)}; + \path[->](blobs) edge node[right=5pt] {$\cC = k[t]$} (comm); +} + +\end{tikzpicture} +\end{frame} + +\begin{frame}{$n$-categories} +\begin{block}{Defining $n$-categories is fraught with difficulties} +I'm not going to go into details; I'll draw $2$-dimensional pictures, and rely on your intuition for pivotal $2$-categories. +\end{block} +\begin{block}{} +\begin{itemize} +\item +Kevin's talk (part $\mathbb{II}$) will explain the notions of `topological $n$-categories' and `$A_\infty$ $n$-categories'.\item +Defining $n$-categories: a choice of `shape' for morphisms. +\item +We allow all shapes! A vector space for every ball. +\item +`Strong duality' is integral in our definition. +\end{itemize} +\end{block} +\end{frame} + +\newcommand{\roundframe}[1]{\begin{tikzpicture}[baseline]\node[rectangle,inner sep=1pt,rounded corners,fill=white] {#1};\end{tikzpicture}} + + +\begin{frame}{Fields and pasting diagrams} +\begin{block}{Pasting diagrams} +Fix an $n$-category with strong duality $\cC$. A \emph{field} on $\cM$ is a pasting diagram drawn on $\cM$, with cells labelled by morphisms from $\cC$. \end{block} -\begin{tikzpicture} -\node (blobs) at (0,0) {$\bc_*(M; \cC)$}; -\node (skein) at (3,0) {$A(M; \cC)$}; -\node (hoch) at (0,3) {$HH_*(\cA)$}; -\path[->]<1-> (blobs) edge (skein); -\end{tikzpicture} +\begin{example}[$\cC = \text{TL}_d$ the Temperley-Lieb category] +$$\roundframe{\mathfig{0.35}{definition/example-pasting-diagram}} \in \cF^{\text{TL}_d}\left(T^2\right)$$ +\end{example} +\begin{block}{} +Given a field on a ball, we can evaluate it to a morphism. We call the kernel the \emph{null fields}. +\vspace{-3mm} +$$\text{ev}\Bigg(\roundframe{d \mathfig{0.12}{definition/evaluation1}} - \roundframe{\mathfig{0.12}{definition/evaluation2}}\Bigg) = 0$$ +\end{block} +\end{frame} + +\begin{frame}{\emph{Definition} of the blob complex, $k=0,1$} +\begin{block}{Motivation} +A \emph{local} construction, such that when $\cM$ is a ball, $\bc_*(\cM; \cC)$ is a resolution of $A(\cM,; \cC)$. +\end{block} + +\begin{block}{} +\center +$\bc_0(\cM; \cC) = \cF(\cM)$, arbitrary fields on $\cM$. +\end{block} + +\begin{block}{} +\vspace{-1mm} +$$\bc_1(\cM; \cC) = \setc{(B, u, r)}{\begin{array}{c}\text{$B$ an embedded ball}\\\text{$u \in \cF(B)$ in the kernel}\\ r \in \cF(\cM \setminus B)\end{array}}.$$ +\end{block} +\vspace{-3.5mm} +$$\mathfig{.5}{definition/single-blob}$$ +\vspace{-3mm} +\begin{block}{} +\vspace{-6mm} +\begin{align*} +d_1 : (B, u, r) & \mapsto u \circ r & \bc_0 / \im(d_1) \iso A(\cM; \cC) +\end{align*} +\end{block} +\end{frame} + +\begin{frame}{Definition, $k=2$} +\begin{block}{} +\vspace{-1mm} +$$\bc_2 = \bc_2^{\text{disjoint}} \oplus \bc_2^{\text{nested}}$$ +\end{block} +\begin{block}{} +\vspace{-5mm} +\begin{align*} +\bc_2^{\text{disjoint}} & = \roundframe{\mathfig{0.5}{definition/disjoint-blobs}} & u_i \in \ker{\text{ev}_{B_i}} +\end{align*} +\vspace{-4mm} +$$d_2 : (B_1, B_2, u_1, u_2, r) \mapsto (B_2, u_2, r \circ u_1) - (B_1, u_1, r \circ u_2)$$ +\end{block} +\begin{block}{} +\vspace{-5mm} +\begin{align*} +\bc_2^{\text{nested}} & = \roundframe{\mathfig{0.5}{definition/nested-blobs}} & u \in \ker{\text{ev}_{B_1}} +\end{align*} +\vspace{-4mm} +$$d_2 : (B_1, B_2, u, r', r) \mapsto (B_2, u \circ r', r) - (B_1, u, r \circ r')$$ +\end{block} \end{frame} \end{document}