diff -r 455106e40a61 -r fd6e53389f2c pnas/pnas.tex --- a/pnas/pnas.tex Sat Nov 13 20:58:40 2010 -0800 +++ b/pnas/pnas.tex Sun Nov 14 15:39:03 2010 -0800 @@ -74,7 +74,6 @@ %\def\s{\sigma} \input{preamble} -\input{../text/kw_macros} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Don't type in anything in the following section: @@ -374,7 +373,7 @@ Product morphisms are compatible with gluing. Let $\pi:E\to X$, $\pi_1:E_1\to X_1$, and $\pi_2:E_2\to X_2$ be pinched products with $E = E_1\cup E_2$. -Let $a\in \cC(X)$, and let $a_i$ denote the restriction of $a$ to $X_i\sub X$. +Let $a\in \cC(X)$, and let $a_i$ denote the restriction of $a$ to $X_i\subset X$. Then \[ \pi^*(a) = \pi_1^*(a_1)\bullet \pi_2^*(a_2) . @@ -401,7 +400,7 @@ \end{axiom} To state the next axiom we need the notion of {\it collar maps} on $k$-morphisms. -Let $X$ be a $k$-ball and $Y\sub\bd X$ be a $(k{-}1)$-ball. +Let $X$ be a $k$-ball and $Y\subset\bd X$ be a $(k{-}1)$-ball. Let $J$ be a 1-ball. Let $Y\times_p J$ denote $Y\times J$ pinched along $(\bd Y)\times J$. A collar map is an instance of the composition @@ -434,7 +433,7 @@ \label{axiom:families} For each $n$-ball $X$ and each $c\in \cl{\cC}(\bd X)$ we have a map of chain complexes \[ - C_*(\Homeo_\bd(X))\ot \cC(X; c) \to \cC(X; c) . + C_*(\Homeo_\bd(X))\tensor \cC(X; c) \to \cC(X; c) . \] These action maps are required to be associative up to homotopy, and also compatible with composition (gluing) in the sense that @@ -464,7 +463,6 @@ Define product morphisms via product cell decompositions. -\nn{also do bordism category} \subsection{The blob complex} \subsubsection{Decompositions of manifolds} @@ -497,7 +495,7 @@ a functor $\psi_{\cC;W}$ from $\cell(W)$ to the category of sets (possibly with additional structure if $k=n$). Each $k$-ball $X$ of a decomposition $y$ of $W$ has its boundary decomposed into $k{-}1$-balls, -and there is a subset $\cC(X)\spl \sub \cC(X)$ of morphisms whose boundaries +and there is a subset $\cC(X)\spl \subset \cC(X)$ of morphisms whose boundaries are splittable along this decomposition. \begin{defn} @@ -505,7 +503,7 @@ For a decomposition $x = \bigsqcup_a X_a$ in $\cell(W)$, $\psi_{\cC;W}(x)$ is the subset \begin{equation*} %\label{eq:psi-C} - \psi_{\cC;W}(x) \sub \prod_a \cC(X_a)\spl + \psi_{\cC;W}(x) \subset \prod_a \cC(X_a)\spl \end{equation*} where the restrictions to the various pieces of shared boundaries amongst the cells $X_a$ all agree (this is a fibered product of all the labels of $n$-cells over the labels of $n-1$-cells). When $k=n$, the `subset' and `product' in the above formula should be interpreted in the appropriate enriching category. @@ -673,10 +671,10 @@ (using the gluing maps described in Property \ref{property:gluing-map}) commutes (up to homotopy). \begin{equation*} \xymatrix@C+0.3cm{ - \CH{X} \otimes \bc_*(X) - \ar[r]_{e_{X}} \ar[d]^{\gl^{\Homeo}_Y \otimes \gl_Y} & + \CH{X} \tensor \bc_*(X) + \ar[r]_{e_{X}} \ar[d]^{\gl^{\Homeo}_Y \tensor \gl_Y} & \bc_*(X) \ar[d]_{\gl_Y} \\ - \CH{X \bigcup_Y \selfarrow} \otimes \bc_*(X \bigcup_Y \selfarrow) \ar[r]_<<<<<<<{e_{(X \bigcup_Y \scalebox{0.5}{\selfarrow})}} & \bc_*(X \bigcup_Y \selfarrow) + \CH{X \bigcup_Y \selfarrow} \tensor \bc_*(X \bigcup_Y \selfarrow) \ar[r]_<<<<<<<{e_{(X \bigcup_Y \scalebox{0.5}{\selfarrow})}} & \bc_*(X \bigcup_Y \selfarrow) } \end{equation*} \end{enumerate} @@ -782,7 +780,7 @@ The little disks operad $LD$ is homotopy equivalent to the $n=1$ case of the $n$-SC operad. The blob complex $\bc_*(I, \cC)$ is a bimodule over itself, and the $A_\infty$-bimodule intertwiners are homotopy equivalent to the Hochschild cohains $Hoch^*(C, C)$. The usual Deligne conjecture (proved variously in \cite{hep-th/9403055, MR1805894, MR2064592, MR1805923}) gives a map \[ - C_*(LD_k)\otimes \overbrace{Hoch^*(C, C)\otimes\cdots\otimes Hoch^*(C, C)}^{\text{$k$ copies}} + C_*(LD_k)\tensor \overbrace{Hoch^*(C, C)\tensor\cdots\tensor Hoch^*(C, C)}^{\text{$k$ copies}} \to Hoch^*(C, C), \] which we now see to be a specialization of Theorem \ref{thm:deligne}.