Blob homology, part ${\mathbb I}$

Scott Morrison http://tqft.net/ joint work with Kevin Walker

UC Berkeley / Miller Institute for Basic Research

Homotopy Theory and Higher Algebraic Structures, UC Riverside, November 10 2009 http://tqft.net/UCR-blobs1 Overview

Outline

æ

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

What is blob homology?

The blob complex takes an *n*-manifold \mathcal{M} and an '*n*-category with strong duality' \mathcal{C} and produces a chain complex, $\mathcal{B}_*(\mathcal{M}; \mathcal{C})$.

What is blob homology?

The blob complex takes an *n*-manifold \mathcal{M} and an '*n*-category with strong duality' \mathcal{C} and produces a chain complex, $\mathcal{B}_*(\mathcal{M}; \mathcal{C})$.

What is blob homology?

The blob complex takes an *n*-manifold \mathcal{M} and an '*n*-category with strong duality' \mathcal{C} and produces a chain complex, $\mathcal{B}_*(\mathcal{M}; \mathcal{C})$.

Defining *n*-categories is fraught with difficulties

I'm not going to go into details; I'll draw 2-dimensional pictures, and rely on your intuition for pivotal 2-categories.

- Kevin's talk (part III) will explain the notions of 'topological n-categories' and 'A_∞ n-categories'.
- Defining *n*-categories: a choice of 'shape' for morphisms.
- We allow all shapes! A vector space for every ball.
- 'Strong duality' is integral in our definition.

Fields and pasting diagrams

Pasting diagrams

Fix an *n*-category with strong duality C. A *field* on \mathcal{M} is a pasting diagram drawn on \mathcal{M} , with cells labelled by morphisms from C.

Example ($C = \mathsf{TL}_d$ the Temperley-Lieb category)

Given a field on a ball, we can evaluate it to a morphism. We call the kernel the *null fields*.

$$\operatorname{ev}\left(\textcircled{0} - \frac{1}{d} \textcircled{0} \right) = 0$$

Overview

Definition of the blob complex, k = 0, 1

Motivation

A *local* construction, such that when \mathcal{M} is a ball, $\mathcal{B}_*(\mathcal{M}; \mathcal{C})$ is a resolution of $A(\mathcal{M}; \mathcal{C})$.

 $\mathcal{B}_0(\mathcal{M};\mathcal{C})=\mathcal{F}(\mathcal{M})\text{, arbitrary fields on }\mathcal{M}.$

$$\mathcal{B}_1(\mathcal{M};\mathcal{C}) = \left\{ (B,u,r) \; \left| egin{array}{c} B ext{ an embedded ball} \ u \in \mathcal{F}(B) ext{ in the kernel} \ r \in \mathcal{F}(\mathcal{M} \setminus B) \end{array}
ight\}.$$

 $d_1:(B,u,r)\mapsto u\circ r$

 $\mathcal{B}_0/\operatorname{\mathsf{im}}(d_1)\cong A(\mathcal{M};\mathcal{C})$

Overview

Definition, k = 2

