The blob complex

Scott Morrison http://tqft.net/ joint work with Kevin Walker

UC Berkeley / Miller Institute for Basic Research

Low-Dimensional Topology and Categorification, Stony Brook University, June 21-25 2010

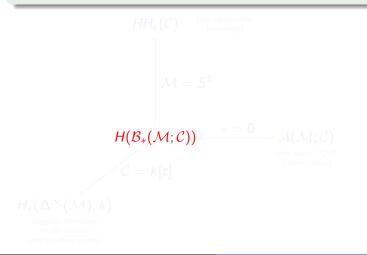
slides: http://tqft.net/sunysb-blobs
paper: http://tqft.net/blobs

The blob complex

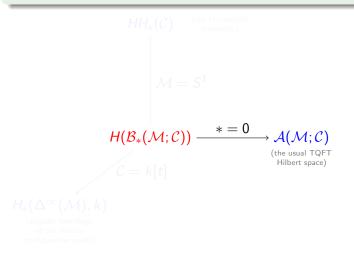
... homotopical topology and TQFT have grown so close that I have started thinking that they are turning into the language of new foundations.

- Yuri Manin, September 2008

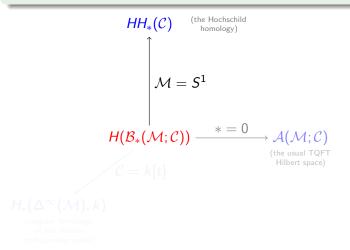
What is the blob complex?



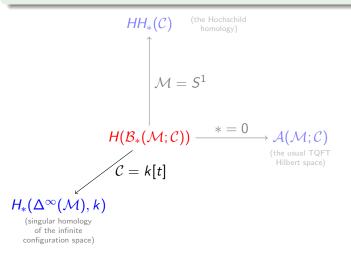
What is the blob complex?



What is the blob complex?



What is the blob complex?



n-categories

There are many definitions of *n*-categories!

For most of what follows, I'll draw 2-dimensional pictures and rely on your intuition for pivotal 2-categories.

We have another definition!

Many axioms; geometric examples are easy, algebraic ones hard.

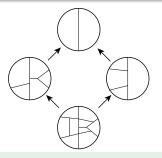
- A vector space $\mathcal{C}(B^n)$ for every *n*-ball *B*.
- An associative gluing map: with B = ∪_i B_i, balls glued together to form a ball,

$$\bigotimes \mathcal{C}(B_i) \to \mathcal{C}(B)$$

(the \otimes is fibered over 'boundary restriction' maps).

Cellulations of manifolds

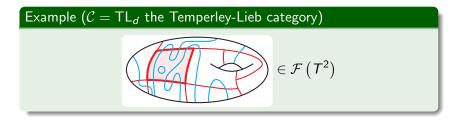
Consider cell(M), the category of cellulations of a manifold M, with morphisms 'antirefinements'.



An *n*-category C gives a functor from cell(M) to vector spaces. objects send a cellulation to the product of C on each top-cell, restricting to the subset where boundaries agree morphisms send an antirefinement to the appropriate gluing map.

Fields

A field on \mathcal{M}^n is a choice of cellulation and a choice of *n*-morphism for each top-cell.



Given a field on a ball, we can evaluate it to a morphism using the gluing map. We call the kernel the *null fields*.

Background: TQFT invariants

Definition

We associate to an n-manifold ${\mathcal M}$ the skein module

$$\mathcal{A}(\mathcal{M}) = \mathcal{F}(\mathcal{M})/\ker \mathit{ev},$$

fields modulo fields which evaluate to zero inside some ball.

Equivalently, $\mathcal{A}(\mathcal{M})$ is the colimit of \mathcal{C} along cell(M).

 $\mathcal{A}(Y \times [0,1])$ is a 1-category, and when $Y \subset \partial X$, $\mathcal{A}(X)$ is a module over $\mathcal{A}(Y \times [0,1])$.

Theorem (Gluing formula)

When $Y \sqcup Y^{op} \subset \partial X$,

$$\mathcal{A}(X\bigcup_{Y})\cong \mathcal{A}(X)\bigotimes_{\mathcal{A}(Y\times[0,1])}$$
.

Motivation: Khovanov homology as a 4d TQFT

Theorem

Khovanov homology gives a 4-category:

3-morphisms tangles, with the usual 3 operations,

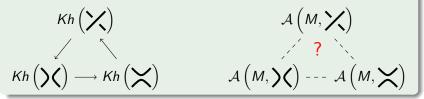
4-morphisms $\operatorname{Hom}_{Kh}(T_1, T_2) = Kh(T_1 \cup \overline{T}_2)$, composition defined by saddle cobordisms

There is a corresponding 4-manifold invariant. Given $L \subset \partial W^4$, it associates a doubly-graded vector space $\mathcal{A}(W, L; Kh)$.

 $\mathcal{A}(B^4, L; Kh) \cong Kh(L)$

Computations are hard

This invariant is hard to compute, because the TQFT skein module construction breaks the exact triangle for resolving a crossing.



There is a spectral sequence converging to 0 relating the blob homologies for the triangle of resolutions.

Conjecture

It may be possible to compute the skein module by first computing the entire blob homology.

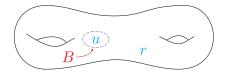
Definition of the blob complex, k = 0, 1

Motivation

A *local* construction, such that when \mathcal{M} is a ball, $\mathcal{B}_*(\mathcal{M}; \mathcal{C})$ is a resolution of $\mathcal{A}(\mathcal{M}; \mathcal{C})$.

 $\mathcal{B}_0(\mathcal{M};\mathcal{C})=\mathcal{F}(\mathcal{M}),$ arbitrary fields on $\mathcal{M}.$

$$\mathcal{B}_1(\mathcal{M};\mathcal{C}) = \mathbb{C} \left\{ (B, u, r) \mid \begin{array}{c} B \text{ an embedded ball} \\ u \in \mathcal{F}(B) \text{ in the kernel} \\ r \in \mathcal{F}(\mathcal{M} \setminus B) \end{array} \right\}$$

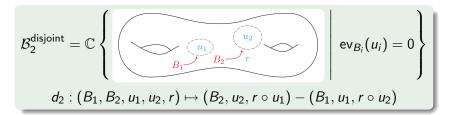


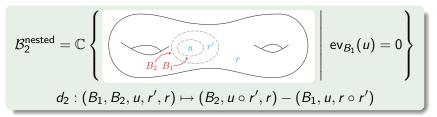
 $d_1:(B,u,r)\mapsto u\circ r$

 $\mathcal{B}_0/\operatorname{\mathsf{im}}(d_1)\cong A(\mathcal{M};\mathcal{C})$

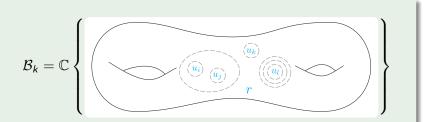
Definition, k = 2

$$\mathcal{B}_2 = \mathcal{B}_2^{\mathsf{disjoint}} \oplus \mathcal{B}_2^{\mathsf{nested}}$$





Definition, general case



k blobs, properly nested or disjoint, with "innermost" blobs labelled by fields that evaluate to zero.

$$d_k: \mathcal{B}_k \to \mathcal{B}_{k-1} = \sum_i (-1)^i (\text{erase blob } i)$$

Hochschild homology

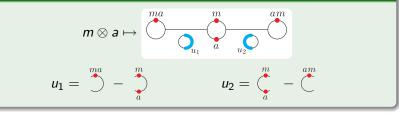
TQFT on S^1 is 'coinvariants'

$$\mathcal{A}(S^1, A) = \mathbb{C}\left\{ \bigcup_{b \in a}^{m} \right\} / \left\{ \bigcap_{a \in a}^{m} - \bigcap_{a \in a}^{m} \right\} = A/(ab - ba)$$

The Hochschild complex is 'coinvariants of the bar resolution'

$$\cdots
ightarrow A \otimes A \otimes A
ightarrow A \otimes A rac{m \otimes \mathsf{a} \mapsto \mathsf{m} \mathsf{a} - \mathsf{a} \mathsf{m}}{\mathsf{A}}$$

Theorem $(\operatorname{Hoch}_*(A) \cong \mathcal{B}_*(S^1; A))$



Scott Morrison

The blob complex

An action of $C_*(Homeo(\mathcal{M}))$

Theorem

There's a chain map

$$\mathcal{C}_*(\mathsf{Homeo}(\mathcal{M}))\otimes\mathcal{B}_*(\mathcal{M}) o\mathcal{B}_*(\mathcal{M}).$$

which is associative up to homotopy, and compatible with gluing.

Taking H_0 , this is the mapping class group acting on a TQFT skein module.

An action of $C_*(Homeo(\mathcal{M}))$

Proof.

Step 1 If $\mathcal{M} = B^n$ or a union of balls, there's a unique chain map, since $\mathcal{B}_*(B^n; \mathcal{C}) \simeq \mathcal{C}$ is concentrated in homological degree 0.

Step 2 Fix an open cover \mathcal{U} of balls. A family of homeomorphisms $P^k \to \text{Homeo}(\mathcal{M})$ can be broken up in into pieces, each of which is supported in at most k open sets from \mathcal{U} .

Gluing

$\mathcal{B}_*(Y imes [0,1])$ is naturally an A_∞ category

multiplication (m_2) : gluing $[0, 1] \simeq [0, 1] \cup [0, 1]$ associativity up to homotopy (m_k) : reparametrising [0, 1] using the action of $C_*(\text{Homeo}([0, 1]))$.

If $Y \subset \partial X$ then $\mathcal{B}_*(X)$ is an A_∞ module over $\mathcal{B}_*(Y)$.

Theorem (Gluing formula)

When
$$Y \sqcup Y^{op} \subset \partial X$$
,
 $\mathcal{B}_*(X \bigcup_Y \cap) \cong \mathcal{B}_*(X) \bigotimes_{\mathcal{B}_*(Y)}^{A_\infty} \cap$.

In principle, we can compute blob homology from a handle decomposition, by iterated Hochschild homology.

Higher Deligne conjecture

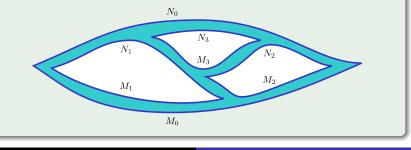
Deligne conjecture

Chains on the little discs operad acts on Hochschild cohomology.

Call Hom_{$\mathcal{B}_*(\partial M)$} ($\mathcal{B}_*(\mathcal{M}), \mathcal{B}_*(\mathcal{M})$) 'blob cochains on \mathcal{M}' .

Theorem (Higher Deligne conjecture)

Chains on the *n*-dimensional fat graph operad acts on blob cochains.



Maps to a space

Fix a target space \mathcal{T} . There is an A_{∞} *n*-category $\pi_{\leq n}^{\infty}(\mathcal{T})$ defined by $\pi_{\leq n}^{\infty}(\mathcal{T})(B) = C_*(\mathsf{Maps}(B \to \mathcal{T})).$

Theorem

The blob complex recovers mapping spaces:

$$\mathcal{B}_*(\mathcal{M}; \pi^\infty_{\leq n}(\mathcal{T})) \cong \mathcal{C}_*(\mathsf{Maps}(\mathcal{M} \to \mathcal{T}))$$

This generalizes a result of Lurie: if \mathcal{T} is n-1 connected, $\pi_{\leq n}^{\infty}(\mathcal{T})$ is an E_n -algebra and the blob complex is the same as his topological chiral homology.