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The blob complex

... homotopical topology and TQFT have grown so close
that I have started thinking that they are turning into the
language of new foundations.

— Yuri Manin, September 2008
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Overview Definition Properties

What is the blob complex?

The blob complex takes an n-manifold M and an ‘n-category with
strong duality’ C and produces a chain complex, B∗(M; C).

H(B∗(M; C)) A(M; C)
(the usual TQFT

Hilbert space)

∗ = 0

HH∗(C) (the Hochschild
homology)

M = S1

H∗(∆∞(M), k)
(singular homology

of the infinite
configuration space)

C = k[t]
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n-categories

There are many definitions of n-categories!

For most of what follows, I’ll draw 2-dimensional pictures and rely
on your intuition for pivotal 2-categories.

We have another definition!

Many axioms; geometric examples are easy, algebraic ones hard.

A vector space C(Bn) for every n-ball B.

An associative gluing map: with B =
⋃

i Bi , balls glued
together to form a ball,⊗

C(Bi )→ C(B)

(the ⊗ is fibered over ‘boundary restriction’ maps).

...
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Cellulations of manifolds

Consider cell(M), the category of cellulations of a manifold M, with
morphisms ‘antirefinements’.

An n-category C gives a functor from cell(M) to vector spaces.

objects send a cellulation to the product of C on each top-cell,
restricting to the subset where boundaries agree

morphisms send an antirefinement to the appropriate gluing map.
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Fields

A field on Mn is a choice of cellulation and a choice of n-morphism
for each top-cell.

Example (C = TLd the Temperley-Lieb category)

∈ F
(
T 2
)

Given a field on a ball, we can evaluate it to a morphism using the
gluing map. We call the kernel the null fields.

ev

(
− 1

d

)
= 0
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Background: TQFT invariants

Definition

We associate to an n-manifold M the skein module

A(M) = F(M)/ ker ev ,

fields modulo fields which evaluate to zero inside some ball.

Equivalently, A(M) is the colimit of C along cell(M).

A(Y × [0, 1]) is a 1-category, and when Y ⊂ ∂X , A(X ) is a module
over A(Y × [0, 1]).

Theorem (Gluing formula)

When Y t Y op ⊂ ∂X ,

A(X
⋃
Y

bb ) ∼= A(X )
⊗

A(Y×[0,1])

bb .
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Motivation: Khovanov homology as a 4d TQFT

Theorem

Khovanov homology gives a 4-category:

3-morphisms tangles, with the usual 3 operations,

4-morphisms HomKh (T1,T2) = Kh(T1 ∪ T̄2), composition defined
by saddle cobordisms

There is a corresponding 4-manifold invariant. Given L ⊂ ∂W 4, it
associates a doubly-graded vector space A(W , L; Kh).

A(B4, L; Kh) ∼= Kh(L)
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Computations are hard

This invariant is hard to compute, because the TQFT skein module
construction breaks the exact triangle for resolving a crossing.

Kh
( )

Kh
( )

Kh
( )

A
(

M,
)

A
(

M,
)

A
(

M,
)?

There is a spectral sequence converging to 0 relating the blob
homologies for the triangle of resolutions.

Conjecture

It may be possible to compute the skein module by first computing
the entire blob homology.
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Definition of the blob complex, k = 0, 1

Motivation

A local construction, such that when M is a ball, B∗(M; C) is a
resolution of A(M; C).

B0(M; C) = F(M), arbitrary fields on M.

B1(M; C) = C

(B, u, r)

∣∣∣∣∣∣
B an embedded ball

u ∈ F(B) in the kernel
r ∈ F(M\ B)

 .

d1 : (B, u, r) 7→ u ◦ r B0/ im(d1) ∼= A(M; C)
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Definition, k = 2

B2 = Bdisjoint
2 ⊕ Bnested

2

Bdisjoint
2 = C


∣∣∣∣∣∣∣∣ evBi

(ui ) = 0


d2 : (B1,B2, u1, u2, r) 7→ (B2, u2, r ◦ u1)− (B1, u1, r ◦ u2)

Bnested
2 = C


∣∣∣∣∣∣∣∣ evB1(u) = 0


d2 : (B1,B2, u, r

′, r) 7→ (B2, u ◦ r ′, r)− (B1, u, r ◦ r ′)
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Definition, general case

Bk = C




k blobs, properly nested or disjoint, with “innermost” blobs labelled
by fields that evaluate to zero.

dk : Bk → Bk−1 =
∑

i (−1)i (erase blob i)
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Hochschild homology

TQFT on S1 is ‘coinvariants’

A(S1,A) = C

{ }
/
{

−
}

= A/(ab − ba)

The Hochschild complex is ‘coinvariants of the bar resolution’

· · · → A⊗ A⊗ A→ A⊗ A
m⊗a 7→ma−am−−−−−−−−−→ A

Theorem (Hoch∗(A) ∼= B∗(S1; A))

m ⊗ a 7→

u1 = − u2 = −
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An action of C∗(Homeo(M))

Theorem

There’s a chain map

C∗(Homeo(M))⊗ B∗(M)→ B∗(M).

which is associative up to homotopy, and compatible with gluing.

Taking H0, this is the mapping class group acting on a TQFT skein
module.
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An action of C∗(Homeo(M))

Proof.

Step 1 If M = Bn or a union of balls, there’s a unique chain
map, since B∗(Bn; C) ' C is concentrated in
homological degree 0.

Step 2 Fix an open cover U of balls.
A family of homeomorphisms Pk → Homeo(M) can
be broken up in into pieces, each of which is
supported in at most k open sets from U .

Scott Morrison The blob complex



Overview Definition Properties

Gluing

B∗(Y × [0, 1]) is naturally an A∞ category

multiplication (m2): gluing [0, 1] ' [0, 1] ∪ [0, 1]

associativity up to homotopy (mk): reparametrising [0, 1] using the
action of C∗(Homeo([0, 1])).

If Y ⊂ ∂X then B∗(X ) is an A∞ module over B∗(Y ).

Theorem (Gluing formula)

When Y t Y op ⊂ ∂X ,

B∗(X
⋃
Y

bb ) ∼= B∗(X )
A∞⊗
B∗(Y )

bb .

In principle, we can compute blob homology from a handle
decomposition, by iterated Hochschild homology.
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Higher Deligne conjecture

Deligne conjecture

Chains on the little discs operad acts on Hochschild cohomology.

Call HomB∗(∂M) (B∗(M),B∗(M)) ‘blob cochains on M’.

Theorem (Higher Deligne conjecture)

Chains on the n-dimensional fat graph operad acts on blob cochains.
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Maps to a space

Fix a target space T . There is an A∞ n-category π∞≤n(T ) defined by

π∞≤n(T )(B) = C∗(Maps(B → T )).

Theorem

The blob complex recovers mapping spaces:

B∗(M;π∞≤n(T )) ∼= C∗(Maps(M→ T ))

This generalizes a result of Lurie: if T is n − 1 connected, π∞≤n(T )
is an En-algebra and the blob complex is the same as his topological
chiral homology.
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