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The blob complex

... homotopical topology and TQFT have grown so close
that I have started thinking that they are turning into the
language of new foundations.

— Yuri Manin, September 2008
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What is the blob complex?

The blob complex takes an n-manifold M and an ‘n-category with
strong duality’ C and produces a chain complex, B∗(M; C).

H(B∗(M; C)) A(M; C)
(the usual TQFT

Hilbert space)

∗ = 0

HH∗(C) (the Hochschild
homology)

M = S1

H∗(∆∞(M), k)
(singular homology

of the infinite
configuration space)

C = k[t]
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Motivation: Khovanov homology as a 4d TQFT

Theorem

Khovanov homology gives a 4-category:

3-morphisms tangles, with the usual 3 operations,

4-morphisms HomKh (T1,T2) = Kh(T1 ∪ T̄2), composition defined
by saddle cobordisms

There is a corresponding 4-manifold invariant. Given L ⊂ ∂W 4, it
associates a doubly-graded vector space A(W , L; Kh).

A(B4, L; Kh) ∼= Kh(L)

Scott Morrison The blob complex



Overview Definition Properties

Computations are hard

The corresponding 4-manifold invariant is hard to compute, because
the TQFT skein module construction breaks the exact triangle for
resolving a crossing.

Kh
( )

Kh
( )

Kh
( )

A
(

M,
)

A
(

M,
)

A
(

M,
)?

There is a spectral sequence converging to 0 relating the blob
homologies for the triangle of resolutions.

Conjecture

It may be possible to compute the skein module by first computing
the entire blob homology.
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n-categories

Defining n-categories is fraught with difficulties

For now, I’m not going to go into details; I’ll draw 2-dimensional
pictures, and rely on your intuition for pivotal 2-categories.

Later, I’ll explain the notions of ‘topological n-categories’ and ‘A∞
n-categories’.

Defining n-categories: a choice of ‘shape’ for morphisms.

We allow all shapes! A vector space for every ball.

‘Strong duality’ is integral in our definition.
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Fields and pasting diagrams

Pasting diagrams

Fix an n-category with strong duality C. A field on M is a pasting
diagram drawn on M, with cells labelled by morphisms from C.

Example (C = TLd the Temperley-Lieb category)

∈ F
(
T 2
)

Given a pasting diagram on a ball, we can evaluate it to a morphism.
We call the kernel the null fields.

ev

(
− 1

d

)
= 0
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Background: TQFT invariants

Definition

A decapitated n + 1-dimensional TQFT associates a vector space
A(M) to each n-manifold M.

(‘decapitated’: no numerical invariants of n + 1-manifolds.)

If the manifold has boundary, we get a category. Objects are
boundary data, HomA(M) (x , y) = A(M; x , y).

We want to extend ‘all the way down’. The k-category associated to
the n − k-manifold Y is A(Y × Bk).

Definition

Given an n-category C, the associated TQFT is

A(M) = F(M)/ ker ev ,

fields modulo fields which evaluate to zero inside some ball.
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Definition of the blob complex, k = 0, 1

Motivation

A local construction, such that when M is a ball, B∗(M; C) is a
resolution of A(M, ; C).

B0(M; C) = F(M), arbitrary pasting diagrams on M.

B1(M; C) = C

(B, u, r)

∣∣∣∣∣∣
B an embedded ball

u ∈ F(B) in the kernel
r ∈ F(M\ B)

 .

d1 : (B, u, r) 7→ u ◦ r B0/ im(d1) ∼= A(M; C)
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Definition, k = 2

B2 = Bdisjoint
2 ⊕ Bnested

2

Bdisjoint
2 = C


∣∣∣∣∣∣∣∣ evBi

(ui ) = 0


d2 : (B1,B2, u1, u2, r) 7→ (B2, u2, r ◦ u1)− (B1, u1, r ◦ u2)

Bnested
2 = C


∣∣∣∣∣∣∣∣ evB1(u) = 0


d2 : (B1,B2, u, r

′, r) 7→ (B2, u ◦ r ′, r)− (B1, u, r ◦ r ′)
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Definition, general case

Bk = C




k blobs, properly nested or disjoint, with “innermost” blobs labelled
by pasting diagrams that evaluate to zero.

dk : Bk → Bk−1 =
∑

i (−1)i (erase blob i)
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Hochschild homology

TQFT on S1 is ‘coinvariants’

A(S1,A) = C

{ }
/
{

−
}

= A/(ab − ba)

The Hochschild complex is ‘coinvariants of the bar resolution’

· · · → A⊗ A⊗ A→ A⊗ A
m⊗a 7→ma−am−−−−−−−−−→ A

Theorem (Hoch∗(A) ∼= B∗(S1; A))

m ⊗ a 7→

u1 = − u2 = −
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An action of C∗(Homeo(M))

Theorem

There’s a chain map

C∗(Homeo(M))⊗ B∗(M)→ B∗(M).

which is associative up to homotopy, and compatible with gluing.

Taking H0, this is the mapping class group acting on a TQFT skein
module.
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Gluing

B∗(Y × [0, 1]) is naturally an A∞ category

m2: gluing [0, 1] ' [0, 1] ∪ [0, 1]

mk : reparametrising [0, 1]

If Y ⊂ ∂X then B∗(X ) is an A∞ module over B∗(Y ).

Theorem (Gluing formula)

When Y t Y op ⊂ ∂X ,

B∗(X
⋃
Y

bb ) ∼= B∗(X )
A∞⊗
B∗(Y )

bb .

In principle, we can compute blob homology from a handle
decomposition, by iterated Hochschild homology.
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Higher Deligne conjecture

Deligne conjecture

Chains on the little discs operad acts on Hochschild cohomology.

Call HomB∗(∂M) (B∗(M),B∗(M)) ‘blob cochains on M’.

Theorem (Higher Deligne conjecture)

Chains on the n-dimensional fat graph operad acts on blob cochains.
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Maps to a space

Fix a target space T . There is an A∞ n-category π∞≤n(T ) defined by

π∞≤n(T )(B) = C∗(Maps(B → T )).

Theorem

The blob complex recovers mapping spaces:

B∗(M;π∞≤n(T )) ∼= C∗(Maps(M → T ))

This generalizes a result of Lurie: if T is n − 1 connected, π∞≤n(T )
is an En-algebra and the blob complex is the same as his topological
chiral homology.
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