The blob complex

Scott Morrison
http://tqft.net/
joint work with Kevin Walker

UC Berkeley / Miller Institute for Basic Research

Low-Dimensional Topology and Categorification, Stony Brook University, June 21-25 2010

slides: http://tqft.net/sunysb-blobs

paper: http://tqft.net/blobs

Motivation: Khovanov homology as a 4d TQFT

Theorem

Khovanov homology gives a 4-category:

3-morphisms tangles, with the usual 3 operations,

4-morphisms $\operatorname{Hom}_{Kh}(T_1, T_2) = Kh(T_1 \cup \overline{T}_2)$, composition defined by saddle cobordisms

There is a corresponding 4-manifold invariant. Given $L \subset \partial W^4$, it associates a doubly-graded vector space $\mathcal{A}(W, L; Kh)$.

$$\mathcal{A}(B^4, L; Kh) \cong Kh(L)$$

What is the blob complex?

The blob complex takes an *n*-manifold \mathcal{M} and an '*n*-category with strong duality' \mathcal{C} and produces a chain complex, $\mathcal{B}_*(\mathcal{M}; \mathcal{C})$.

Computations are hard

The corresponding 4-manifold invariant is hard to compute, because the TQFT skein module construction breaks the exact triangle for resolving a crossing.

$$\begin{array}{ccc} Kh\left(\swarrow\right) & \mathcal{A}\left(M,\swarrow\right) \\ & \swarrow & ? \\ Kh\left(\searrow\zeta\right) \longrightarrow Kh\left(\swarrow\right) & \mathcal{A}\left(M,\searrow\zeta\right) --- \mathcal{A}\left(M,\swarrow\right) \end{array}$$

There is a spectral sequence converging to 0 relating the blob homologies for the triangle of resolutions.

Conjecture

It may be possible to compute the skein module by first computing the entire blob homology.

n-categories

Defining *n*-categories is fraught with difficulties

For now, I'm not going to go into details; I'll draw 2-dimensional pictures, and rely on your intuition for pivotal 2-categories.

Later, I'll explain the notions of 'topological *n*-categories' and ' A_{∞} *n*-categories'.

- ▶ Defining *n*-categories: a choice of 'shape' for morphisms.
- ▶ We allow all shapes! A vector space for every ball.
- 'Strong duality' is integral in our definition.

Fields and pasting diagrams

Pasting diagrams

Fix an *n*-category with strong duality C. A *field* on \mathcal{M} is a pasting diagram drawn on \mathcal{M} , with cells labelled by morphisms from C.

Example ($C = TL_d$ the Temperley-Lieb category)

Given a pasting diagram on a ball, we can evaluate it to a morphism. We call the kernel the *null fields*.

$$\operatorname{ev}\left(\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array}\right) = 0$$

Background: TQFT invariants

Definition

A decapitated n + 1-dimensional TQFT associates a vector space $A(\mathcal{M})$ to each n-manifold \mathcal{M} .

('decapitated': no numerical invariants of n + 1-manifolds.)

If the manifold has boundary, we get a category. Objects are boundary data, $\operatorname{Hom}_{\mathcal{A}(\mathcal{M})}(x,y) = \mathcal{A}(\mathcal{M};x,y)$.

We want to extend 'all the way down'. The k-category associated to the n-k-manifold \mathcal{Y} is $\mathcal{A}(\mathcal{Y}\times B^k)$.

Definition

Given an n-category C, the associated TQFT is

$$A(\mathcal{M}) = \mathcal{F}(M) / \ker ev$$

fields modulo fields which evaluate to zero inside some ball.

Definition of the blob complex, k = 0, 1

Motivation

A *local* construction, such that when \mathcal{M} is a ball, $\mathcal{B}_*(\mathcal{M}; \mathcal{C})$ is a resolution of $\mathcal{A}(\mathcal{M}, \mathcal{C})$.

 $\mathcal{B}_0(\mathcal{M};\mathcal{C}) = \mathcal{F}(\mathcal{M})$, arbitrary pasting diagrams on \mathcal{M} .

$$\mathcal{B}_1(\mathcal{M};\mathcal{C}) = \mathbb{C} \left\{ (B,u,r) \; \left| egin{array}{c} B \; \text{an embedded ball} \ u \in \mathcal{F}(B) \; \text{in the kernel} \ r \in \mathcal{F}(\mathcal{M} \setminus B) \end{array}
ight.
ight.$$

$$d_1:(B,u,r)\mapsto u\circ r$$
 $\mathcal{B}_0/\operatorname{im}(d_1)\cong \mathcal{A}(\mathcal{M};\mathcal{C})$

Definition, k = 2

$$\mathcal{B}_2 = \mathcal{B}_2^{\mathsf{disjoint}} \oplus \mathcal{B}_2^{\mathsf{nested}}$$

$$\mathcal{B}_2^{\mathsf{disjoint}} = \mathbb{C} \left\{ \left[\underbrace{u_1}_{B_1} \underbrace{u_2}_{r} \right] \middle| \mathsf{ev}_{B_i}(u_i) = 0 \right\}$$

$$d_2: (B_1, B_2, u_1, u_2, r) \mapsto (B_2, u_2, r \circ u_1) - (B_1, u_1, r \circ u_2)$$

$$\mathcal{B}_2^{\mathsf{nested}} = \mathbb{C} \left\{ \begin{array}{|c|} \hline & & & \\ \hline & u & r' & \\ \hline & & & \\ \hline & d_2: (B_1, B_2, u, r', r) \mapsto (B_2, u \circ r', r) - (B_1, u, r \circ r') \end{array} \right\}$$

Definition, general case

k blobs, properly nested or disjoint, with "innermost" blobs labelled by pasting diagrams that evaluate to zero.

$$d_k: \mathcal{B}_k \to \mathcal{B}_{k-1} = \sum_i (-1)^i \text{(erase blob } i\text{)}$$

Hochschild homology

TQFT on S^1 is 'coinvariants'

$$\mathcal{A}(S^1,A) = \mathbb{C}\left\{ \bigcap_{b = a}^{m} \right\} / \left\{ \bigcap_{a = b}^{m} - \bigcap_{a = b}^{m} \right\} = A/(ab - ba)$$

The Hochschild complex is 'coinvariants of the bar resolution'

$$\cdots \rightarrow A \otimes A \otimes A \rightarrow A \otimes A \xrightarrow{m \otimes a \mapsto ma - am} A$$

Theorem (Hoch $_*(A) \cong \mathcal{B}_*(S^1; A)$)

$$u_1 = \stackrel{ma}{\bigcirc} - \stackrel{m}{\bigcirc}$$
 $u_2 = \stackrel{m}{\bigcirc} - \stackrel{am}{\bigcirc}$

An action of $C_*(Homeo(\mathcal{M}))$

Theorem

There's a chain map

$$C_*(\mathsf{Homeo}(\mathcal{M}))\otimes \mathcal{B}_*(\mathcal{M}) o \mathcal{B}_*(\mathcal{M}).$$

which is associative up to homotopy, and compatible with gluing.

Taking H_0 , this is the mapping class group acting on a TQFT skein module.

Gluing

 $\mathcal{B}_*(Y imes [0,1])$ is naturally an A_∞ category

 m_2 : gluing $[0,1] \simeq [0,1] \cup [0,1]$

 m_k : reparametrising [0, 1]

If $Y \subset \partial X$ then $\mathcal{B}_*(X)$ is an A_{∞} module over $\mathcal{B}_*(Y)$.

Theorem (Gluing formula)

When $Y \sqcup Y^{op} \subset \partial X$,

$$\mathcal{B}_*(X\bigcup_Y)\cong\mathcal{B}_*(X)\bigotimes_{\mathcal{B}_*(Y)}^{A_\infty}$$
.

In principle, we can compute blob homology from a handle decomposition, by iterated Hochschild homology.

Maps to a space

Fix a target space T. There is an A_{∞} n-category $\pi_{\leq n}^{\infty}(T)$ defined by

$$\pi^{\infty}_{\leq n}(T)(B) = C_{*}(\mathsf{Maps}(B \to T)).$$

Theorem

The blob complex recovers mapping spaces:

$$\mathcal{B}_*(M;\pi^\infty_{\leq n}(T))\cong C_*(\mathsf{Maps}(M o T))$$

This generalizes a result of Lurie: if T is n-1 connected, $\pi_{\leq n}^{\infty}(T)$ is an E_n -algebra and the blob complex is the same as his topological chiral homology.

Higher Deligne conjecture

Deligne conjecture

Chains on the little discs operad acts on Hochschild cohomology.

Call $\text{Hom}_{\mathcal{B}_*(\partial M)}(\mathcal{B}_*(\mathcal{M}), \mathcal{B}_*(\mathcal{M}))$ 'blob cochains on \mathcal{M} '.

Theorem (Higher Deligne conjecture)

Chains on the *n*-dimensional fat graph operad acts on blob cochains.

