
Blob Homology

April 21, 2008

1 Introduction

(motivation, summary/outline, etc.)
(motivation: (1) restore exactness in pictures-mod-relations; (1’) add

relations-amongst-relations etc. to pictures-mod-relations; (2) want answer
independent of handle decomp (i.e. don’t just go from coend to derived
coend (e.g. Hochschild homology)); (3) ... )

2 Definitions

2.1 Fields

Fix a top dimension n.
A system of fields [maybe should look for better name; but this is the name

I use elsewhere] is a collection of functors C from manifolds of dimension
n or less to sets. These functors must satisfy various properties (see KW
TQFT notes for details). For example: there is a canonical identification
C(X t Y ) = C(X)×C(Y ); there is a restriction map C(X)→ C(∂X); gluing
manifolds corresponds to fibered products of fields; given a field c ∈ C(Y )
there is a “product field” c × I ∈ C(Y × I); ... [should eventually include full
details of definition of fields.]

[note: probably will suppress from notation the distinction between fields and
their (orientation-reversal) duals]

[remark that if top dimensional fields are not already linear then we will soon
linearize them(?)]

The definition of a system of fields is intended to generalize the relevant
properties of the following two examples of fields.

The first example: Fix a target space B and define C(X) (where X is a
manifold of dimension n or less) to be the set of all maps from X to B.
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The second example will take longer to explain. Given an n-category C
with the right sort of duality (e.g. pivotal 2-category, 1-category with duals,
star 1-category, disklike n-category), we can construct a system of fields as
follows. Roughly speaking, C(X) will the set of all embedded cell complexes
in X with codimension i cells labeled by i-morphisms of C. We’ll spell this
out for n = 1, 2 and then describe the general case.

If X has boundary, we require that the cell decompositions are in general
position with respect to the boundary — the boundary intersects each cell
transversely, so cells meeting the boundary are mere half-cells.

Put another way, the cell decompositions we consider are dual to stan-
dard cell decompositions of X.

We will always assume that our n-categories have linear n-morphisms.
For n = 1, a field on a 0-manifold P is a labeling of each point of P

with an object (0-morphism) of the 1-category C. A field on a 1-manifold
S consists of

• A cell decomposition of S (equivalently, a finite collection of points in
the interior of S);

• a labeling of each 1-cell (and each half 1-cell adjacent to ∂S) by an
object (0-morphism) of C;

• a transverse orientation of each 0-cell, thought of as a choice of “do-
main” and “range” for the two adjacent 1-cells; and

• a labeling of each 0-cell by a morphism (1-morphism) of C, with do-
main and range determined by the transverse orientation and the la-
belings of the 1-cells.

If C is an algebra (i.e. if C has only one 0-morphism) we can ignore the
labels of 1-cells, so a field on a 1-manifold S is a finite collection of points in
the interior of S, each transversely oriented and each labeled by an element
(1-morphism) of the algebra.

For n = 2, fields are just the sort of pictures based on 2-categories (e.g.
tensor categories) that are common in the literature. We describe these
carefully here.

A field on a 0-manifold P is a labeling of each point of P with an object
of the 2-category C. A field of a 1-manifold is defined as in the n = 1 case,
using the 0- and 1-morphisms of C. A field on a 2-manifold Y consists of

• A cell decomposition of Y (equivalently, a graph embedded in Y such
that each component of the complement is homeomorphic to a disk);
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• a labeling of each 2-cell (and each partial 2-cell adjacent to ∂Y ) by a
0-morphism of C;

• a transverse orientation of each 1-cell, thought of as a choice of “do-
main” and “range” for the two adjacent 2-cells;

• a labeling of each 1-cell by a 1-morphism of C, with domain and range
determined by the transverse orientation of the 1-cell and the labelings
of the 2-cells;

• for each 0-cell, a homeomorphism of the boundary R of a small neigh-
borhood of the 0-cell to S1 such that the intersections of the 1-cells
with R are not mapped to ±1 ∈ S1; and

• a labeling of each 0-cell by a 2-morphism of C, with domain and range
determined by the labelings of the 1-cells and the parameterizations
of the previous bullet.

[need to say this better; don’t try to fit everything into the bulleted list]
For general n, a field on a k-manifold Xk consists of

• A cell decomposition of X;

• an explicit general position homeomorphism from the link of each j-
cell to the boundary of the standard (k − j)-dimensional bihedron;
and

• a labeling of each j-cell by a (k− j)-dimensional morphism of C, with
domain and range determined by the labelings of the link of j-cell.

For top dimensional (n-dimensional) manifolds, we’re actually interested
in the linearized space of fields. By default, define Cl(X) = C[C(X)]; that is,
Cl(X) is the vector space of finite linear combinations of fields on X. If X
has boundary, we of course fix a boundary condition: Cl(X; a) = C[C(X; a)].
Thus the restriction (to boundary) maps are well defined because we never
take linear combinations of fields with differing boundary conditions.

In some cases we don’t linearize the default way; instead we take the
spaces Cl(X; a) to be part of the data for the system of fields. In partic-
ular, for fields based on linear n-category pictures we linearize as follows.
Define Cl(X; a) = C[C(X; a)]/K, where K is the space generated by obvious
relations on 0-cell labels. More specifically, let L be a cell decomposition of
X and let p be a 0-cell of L. Let αc and αd be two labelings of L which
are identical except that αc labels p by c and αd labels p by d. Then the
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subspace K is generated by things of the form λαc + αd − αλc+d, where we
leave it to the reader to infer the meaning of αλc+d. Note that we are still
assuming that n-categories have linear spaces of n-morphisms.

[Maybe comment further: if there’s a natural basis of morphisms, then no need;
will do something similar below; in general, whenever a label lives in a linear space
we do something like this; ? say something about tensor product of all the linear
label spaces? Yes:]

For top dimensional (n-dimensional) manifolds, we linearize as follows.
Define an “almost-field” to be a field without labels on the 0-cells. (Recall
that 0-cells are labeled by n-morphisms.) To each unlabeled 0-cell in an
almost field there corresponds a (linear) n-morphism space determined by
the labeling of the link of the 0-cell. (If the 0-cell were labeled, the label
would live in this space.) We associate to each almost-labeling the tensor
product of these spaces (one for each 0-cell). We now define Cl(X; a) to be
the direct sum over all almost labelings of the above tensor products.

2.2 Local relations

Let Bn denote the standard n-ball. A local relation is a collection subspaces
U(Bn; c) ⊂ Cl(Bn; c) (for all c ∈ C(∂Bn)) satisfying the following (three?)
properties.

[Roughly, these are (1) the local relations imply (extended) isotopy; (2) U(Bn; ·)
is an ideal w.r.t. gluing; and (3) this ideal is generated by “small” generators (con-
tained in an open cover of Bn). See KW TQFT notes for details. Need to transfer
details to here.]

For maps into spaces, U(Bn; c) is generated by things of the form a−b ∈
Cl(Bn; c), where a and b are maps (fields) which are homotopic rel boundary.

For n-category pictures, U(Bn; c) is equal to the kernel of the evaluation
map Cl(Bn; c) → mor(c′, c′′), where (c′, c′′) is some (any) division of c into
domain and range.

[maybe examples of local relations before general def?]
Note that the Y is an n-manifold which is merely homeomorphic to the

standard Bn, then any homeomorphism Bn → Y induces the same local
subspaces for Y . We’ll denote these by U(Y ; c) ⊂ Cl(Y ; c), c ∈ C(∂Y ). [Is
this true in high (smooth) dimensions? Self-diffeomorphisms of Bn rel boundary
might not be isotopic to the identity. OK for PL and TOP?]

Given a system of fields and local relations, we define the skein space
A(Y n; c) to be the space of all finite linear combinations of fields on the n-
manifold Y modulo local relations. The Hilbert space Z(Y ; c) for the TQFT
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based on the fields and local relations is defined to be the dual of A(Y ; c).
(See KW TQFT notes or xxxx for details.)

The blob complex is in some sense the derived version of A(Y ; c).

2.3 The blob complex

Let X be an n-manifold. Assume a fixed system of fields. In this section
we will usually suppress boundary conditions on X from the notation (e.g.
write Cl(X) instead of Cl(X; c)).

We only consider compact manifolds, so if Y ⊂ X is a closed codimension
0 submanifold of X, then X \ Y implicitly means the closure X \ Y .

We will define B0(X), B1(X) and B2(X), then give the general case.
Define B0(X) = Cl(X). (If X has nonempty boundary, instead define

B0(X; c) = Cl(X; c). We’ll omit this sort of detail in the rest of this section.)
In other words, B0(X) is just the space of all linearized fields on X.
B1(X) is the space of all local relations that can be imposed on B0(X).

More specifically, define a 1-blob diagram to consist of

• An embedded closed ball (“blob”) B ⊂ X.

• A field r ∈ C(X \B; c) (for some c ∈ C(∂B) = C(∂(X \B))).

• A local relation field u ∈ U(B; c) (same c as previous bullet).

Define B1(X) to be the space of all finite linear combinations of 1-blob
diagrams, modulo the simple relations relating labels of 0-cells and also the
label (u above) of the blob. [maybe spell this out in more detail] (See xxxx
above.) [maybe restate this in terms of direct sums of tensor products.]

There is a map ∂ : B1(X) → B0(X) which sends (B, r, u) to ru, the
linear combination of fields on X obtained by gluing r to u. In other words
∂ : B1(X) → B0(X) is given by just erasing the blob from the picture (but
keeping the blob label u).

Note that the skein spaceA(X) is naturally isomorphic to B0(X)/∂(B1(X))) =
H0(B∗(X)).
B2(X) is the space of all relations (redundancies) among the relations of

B1(X). More specifically, B2(X) is the space of all finite linear combinations
of 2-blob diagrams (defined below), modulo the usual linear label relations.
[and also modulo blob reordering relations?]

[maybe include longer discussion to motivate the two sorts of 2-blob diagrams]
There are two types of 2-blob diagram: disjoint and nested. A disjoint

2-blob diagram consists of
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• A pair of disjoint closed balls (blobs) B0, B1 ⊂ X.

• A field r ∈ C(X \ (B0 ∪B1); c0, c1) (where ci ∈ C(∂Bi)).

• Local relation fields ui ∈ U(Bi; ci).

Define ∂(B0, B1, r, u0, u1) = (B1, ru0, u1) − (B0, ru1, u0) ∈ B1(X). In other
words, the boundary of a disjoint 2-blob diagram is the sum (with alternating
signs) of the two ways of erasing one of the blobs. It’s easy to check that
∂2 = 0.

A nested 2-blob diagram consists of

• A pair of nested balls (blobs) B0 ⊂ B1 ⊂ X.

• A field r ∈ C(X \B0; c0) (for some c0 ∈ C(∂B0)). Let r = r1∪r′, where
r1 ∈ C(B1 \B0; c0, c1) (for some c1 ∈ C(B1)) and r′ ∈ C(X \B1; c1).

• A local relation field u0 ∈ U(B0; c0).

Define ∂(B0, B1, r, u0) = (B1, r
′, r1u0) − (B0, r, u0). Note that xxxx above

guarantees that r1u0 ∈ U(B1). As in the disjoint 2-blob case, the boundary
of a nested 2-blob is the alternating sum of the two ways of erasing one of
the blobs. If we erase the inner blob, the outer blob inherits the label r1u0.

Now for the general case. A k-blob diagram consists of

• A collection of blobs Bi ⊂ X, i = 0, . . . , k − 1. For each i and j, we
require that either Bi ∩ Bj is empty or Bi ⊂ Bj or Bj ⊂ Bi. (The
case Bi = Bj is allowed. If Bi ⊂ Bj the boundaries of Bi and Bj are
allowed to intersect.) If a blob has no other blobs strictly contained
in it, we call it a twig blob.

• A field r ∈ C(X \ Bt; ct), where Bt is the union of all the twig blobs
and ct ∈ C(∂Bt).

• For each twig blob Bj a local relation field uj ∈ U(Bj ; cj), where cj is
the restriction of ct to ∂Bj . If Bi = Bj then ui = uj .

We define Bk(X) to be the vector space of all finite linear combinations
of k-blob diagrams, modulo the linear label relations and blob reordering
relations defined in the remainder of this paragraph. Let x be a blob diagram
with one undetermined n-morphism label. The unlabeled entity is either a
blob or a 0-cell outside of the twig blobs. Let a and b be two possible n-
morphism labels for the unlabeled blob or 0-cell. Let c = λa + b. Let xa
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be the blob diagram with label a, and define xb and xc similarly. Then we
impose the relation

xc = λxa + xb.

[should do this in terms of direct sums of tensor products] Let x and x′ be two
blob diagrams which differ only by a permutation π of their blob labelings.
Then we impose the relation

x = sign(π)x′.

(Alert readers will have noticed that for k = 2 our definition of Bk(X) is
slightly different from the previous definition of B2(X) — we did not impose
the reordering relations. The general definition takes precedence; the earlier
definition was simplified for purposes of exposition.)

The boundary map ∂ : Bk(X)→ Bk−1(X) is defined as follows. Let b =
({Bi}, r, {uj}) be a k-blob diagram. Let Ej(b) denote the result of erasing
the j-th blob. If Bj is not a twig blob, this involves only decrementing the
indices of blobs Bj+1, . . . , Bk−1. If Bj is a twig blob, we have to assign new
local relation labels if removing Bj creates new twig blobs. If Bl becomes a
twig after removing Bj , then set ul = rluj , where rl is the restriction of r
to Bl \Bj . Finally, define

∂(b) =
k−1∑
j=0

(−1)jEj(b).

The (−1)j factors imply that the terms of ∂2(b) all cancel. Thus we have a
chain complex.

[?? say something about the “shape” of tree? (incl = cone, disj = product)]
[TO DO: expand definition to handle DGA and A∞ versions of n-categories;

relations to Chas-Sullivan string stuff]

3 Basic properties of the blob complex

Proposition 3.1. There is a natural isomorphism B∗(X t Y ) ∼= B∗(X) ⊗
B∗(Y ).

Proof. Given blob diagrams b1 on X and b2 on Y , we can combine them
(putting the b1 blobs before the b2 blobs in the ordering) to get a blob
diagram (b1, b2) on X tY . Because of the blob reordering relations, all blob
diagrams on X t Y arise this way. In the other direction, any blob diagram
on X t Y is equal (up to sign) to one that puts X blobs before Y blobs
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in the ordering, and so determines a pair of blob diagrams on X and Y .
These two maps are compatible with our sign conventions [say more about
this?] and with the linear label relations. The two maps are inverses of each
other. [should probably say something about sign conventions for the differential in
a tensor product of chain complexes; ask Scott]

For the next proposition we will temporarily restore n-manifold bound-
ary conditions to the notation.

Suppose that for all c ∈ C(∂Bn) we have a splitting s : H0(B∗(Bn, c))→
B0(Bn; c) of the quotient map p : B0(Bn; c) → H0(B∗(Bn, c)). [always the
case if we’re working over C]. Then

Proposition 3.2. For all c ∈ C(∂Bn) the natural map p : B∗(Bn, c) →
H0(B∗(Bn, c)) is a chain homotopy equivalence with inverse s : H0(B∗(Bn, c))→
B∗(Bn; c). Here we think of H0(B∗(Bn, c)) as a 1-step complex concentrated
in degree 0.

Proof. By assumption p ◦ s = id, so all that remains is to find a degree 1
map h : B∗(Bn; c) → B∗(Bn; c) such that ∂h + h∂ = id−s ◦ p. For i ≥ 1,
define hi : Bi(Bn; c) → Bi+1(Bn; c) by adding an (i+1)-st blob equal to all
of Bn. In other words, add a new outermost blob which encloses all of the
others. Define h0 : B0(Bn; c) → B1(Bn; c) by setting h0(x) equal to the
1-blob with blob Bn and label x− s(p(x)) ∈ U(Bn; c). [x is a 0-blob diagram,
i.e. x ∈ C(Bn; c)]

(Note that for the above proof to work, we need the linear label relations
for blob labels. Also we need to blob reordering relations (?).)

(Note also that if there is no splitting s, we can let h0 = 0 and get a
homotopy equivalence to the 2-step complex U(Bn; c)→ C(Bn; c).)

(For fields based on n-cats, H0(B∗(Bn; c)) ∼= mor(c′, c′′).)

As we noted above,

Proposition 3.3. There is a natural isomorphism H0(B∗(X)) ∼= A(X).

Proposition 3.4. For fixed fields (n-cat), B∗ is a functor from the category
of n-manifolds and diffeomorphisms to the category of chain complexes and
(chain map) isomorphisms.

[need to same something about boundaries and boundary conditions above. maybe
fix the boundary and consider the category of n-manifolds with the given boundary.]

In particular,

Proposition 3.5. There is an action of Diff(X) on B∗(X).
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The above will be greatly strengthened in Section 5.

For the next proposition we will temporarily restore n-manifold bound-
ary conditions to the notation.

Let X be an n-manifold, ∂X = Y ∪ (−Y ) ∪ Z. Gluing the two copies of
Y together yields an n-manifold Xgl with boundary Zgl. Given compatible
fields (pictures, boundary conditions) a, b and c on Y , −Y and Z, we have
the blob complex B∗(X; a, b, c). If b = −a (the orientation reversal of a),
then we can glue up blob diagrams on X to get blob diagrams on Xgl:

Proposition 3.6. There is a natural chain map

gl :
⊕
a

B∗(X; a,−a, c)→ B∗(Xgl; cgl).

The sum is over all fields a on Y compatible at their (n−2-dimensional)
boundaries with c. ‘Natural’ means natural with respect to the actions of
diffeomorphisms.

The above map is very far from being an isomorphism, even on homology.
This will be fixed in Section 8 below.

An instance of gluing we will encounter frequently below is where X =
X1tX2 and Xgl = X1∪Y X2. (Typically one of X1 or X2 is a disjoint union
of balls.) For xi ∈ B∗(Xi), we introduce the notation

x1 • x2
def= gl(x1 ⊗ x2).

Note that we have resumed our habit of omitting boundary labels from the
notation.

[what else?]

4 n = 1 and Hochschild homology

In this section we analyze the blob complex in dimension n = 1 and find
that for S1 the homology of the blob complex is the Hochschild homology
of the category (algebroid) that we started with.

Notation: HBi(X) = Hi(B∗(X)).
Let us first note that there is no loss of generality in assuming that our

system of fields comes from a category. (Or maybe (???) there is a loss
of generality. Given any system of fields, A(I; a, b) = C(I; a, b)/U(I; a, b)
can be thought of as the morphisms of a 1-category C. More specifically,

9



the objects of C are C(pt), the morphisms from a to b are A(I; a, b), and
composition is given by gluing. If we instead take our fields to be C-pictures,
the C(pt) does not change and neither does A(I; a, b) = HB0(I; a, b). But
what about HBi(I; a, b) for i > 0? Might these higher blob homology groups
be different? Seems unlikely, but I don’t feel like trying to prove it at the
moment. In any case, we’ll concentrate on the case of fields based on 1-
category pictures for the rest of this section.)

(Another question: B∗(I) is an A∞-category. How general of an A∞-
category is it? Given an arbitrary A∞-category can one find fields and
local relations so that B∗(I) is in some sense equivalent to the original A∞-
category? Probably not, unless we generalize to the case where n-morphisms
are complexes.)

Continuing...
Let C be a *-1-category. Then specializing the definitions from above to

the case n = 1 we have:

• C(pt) = ob(C) .

• Let R be a 1-manifold and c ∈ C(∂R). Then an element of C(R; c) is
a collection of (transversely oriented) points in the interior of R, each
labeled by a morphism of C. The intervals between the points are
labeled by objects of C, consistent with the boundary condition c and
the domains and ranges of the point labels.

• There is an evaluation map e : C(I; a, b)→ mor(a, b) given by compos-
ing the morphism labels of the points.

• For x ∈ mor(a, b) let χ(x) ∈ C(I; a, b) be the field with a single point
(at some standard location) labeled by x. Then the kernel of the
evaluation map U(I; a, b) is generated by things of the form y−χ(e(y)).
Thus we can, if we choose, restrict the blob twig labels to things of
this form.

We want to show that HB∗(S1) is naturally isomorphic to the Hochschild
homology of C. [Or better that the complexes are homotopic or quasi-isomorphic.]
In order to prove this we will need to extend the blob complex to allow points
to also be labeled by elements of C-C-bimodules.

Fix points p1, . . . , pk ∈ S1 and C-C-bimodules M1, . . .Mk. We define a
blob-like complex F∗(S1, (pi), (Mi)). The fields have elements of Mi labeling
pi and elements of C labeling other points. The blob twig labels lie in kernels
of evaluation maps. (The range of these evaluation maps is a tensor product
(over C) of Mi’s.) Let F∗(M) = F∗(S1, (∗), (M)), where ∗ ∈ S1 is some
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standard base point. In other words, fields for F∗(M) have an element of M
at the fixed point ∗ and elements of C at variable other points.

We claim that the homology of F∗(M) is isomorphic to the Hochschild
homology of M . [Or maybe we should claim that M → F∗(M) is the/a derived
coend. Or maybe that F∗(M) is quasi-isomorphic (or perhaps homotopic) to the
Hochschild complex of M .] This follows from the following lemmas:

• F∗(M1 ⊕M2) ∼= F∗(M1)⊕ F∗(M2).

• An exact sequence 0 → M1 → M2 → M3 → 0 gives rise to an exact
sequence 0 → F∗(M1) → F∗(M2) → F∗(M3) → 0. (See below for
proof.)

• F∗(C ⊗ C) (the free C-C-bimodule with one generator) is homotopic
to the 0-step complex C. (See below for proof.)

• F∗(C) (here C is wearing its C-C-bimodule hat) is homotopic to
B∗(S1). (See below for proof.)

First we show that F∗(C ⊗ C) is homotopic to the 0-step complex C.
Let F ′∗ ⊂ F∗(C ⊗ C) be the subcomplex where the label of the point ∗

is 1 ⊗ 1 ∈ C ⊗ C. We will show that the inclusion i : F ′∗ → F∗(C ⊗ C) is a
quasi-isomorphism.

Fix a small ε > 0. Let Bε be the ball of radius ε around ∗ ∈ S1. Let
F ε∗ ⊂ F∗(C ⊗ C) be the subcomplex where Bε is either disjoint from or
contained in all blobs, and the two boundary points of Bε are not labeled
points. For a field (picture) y on Bε, let sε(y) be the equivalent picture
with ∗ labeled by 1⊗ 1 and the only other labeled points at distance ±ε/2
from ∗. (See Figure xxxx.) [maybe it’s simpler to assume that there are no
labeled points, other than ∗, in Bε.]

Define a degree 1 chain map jε : F ε∗ → F ε∗ as follows. Let x ∈ F ε∗ be
a blob diagram. If ∗ is not contained in any twig blob, jε(x) is obtained
by adding Bε to x as a new twig blob, with label y − sε(y), where y is the
restriction of x to Bε. If ∗ is contained in a twig blob B with label u =

∑
zi,

jε(x) is obtained as follows. Let yi be the restriction of zi to ∗. Let xi be
equal to x outside of B, equal to zi on B \Bε, and have an additional blob
Bε with label yi − sε(yi). Define jε(x) =

∑
xi.

Note that if x ∈ F ′∗ ∩ F ε∗ then jε(x) ∈ F ′∗ also.
The key property of jε is

∂jε + jε∂ = id−σε,
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where σε : F ε∗ → F ε∗ is given by replacing the restriction of each field men-
tioned in x ∈ F ε∗ (call the restriction y) with sε(y). Note that σε(x) ∈ F ′.

If jε were defined on all of F∗(C⊗C), it would show that σε is a homotopy
inverse to the inclusion F ′∗ → F∗(C ⊗ C). One strategy would be to try to
stitch together various jε for progressively smaller ε and show that F ′∗ is
homotopy equivalent to F∗(C⊗C). Instead, we’ll be less ambitious and just
show that F ′∗ is quasi-isomorphic to F∗(C ⊗ C).

If x is a cycle in F∗(C ⊗C), then for sufficiently small ε x ∈ F ε∗ . (This is
true for any chain in F∗(C ⊗C), since chains are sums of finitely many blob
diagrams.) Then x is homologous to sε(x), which is in F ′∗, so the inclusion
map is surjective on homology. If y ∈ F∗(C ⊗ C) and ∂y = x ∈ F ′∗, then
y ∈ F ε∗ for some ε and

∂x = ∂(σε(y) + jε(x)).

Since σε(y) + jε(x) ∈ F ′, it follows that the inclusion map is injective on
homology. This completes the proof that F ′∗ is quasi-isomorphic to F∗(C ⊗
C).

Let F ′′∗ ⊂ F ′∗ be the subcomplex of F ′∗ where ∗ is not contained in any
blob. We will show that the inclusion i : F ′′∗ → F ′∗ is a homotopy equivalence.

First, a lemma: Let G′′∗ and G′∗ be defined the same as F ′′∗ and F ′∗, except
with S1 replaced some (any) neighborhood of ∗ ∈ S1. Then G′′∗ and G′∗ are
both contractible. For G′∗ the proof is the same as in (3.2), except that
the splitting G′0 → H0(G′∗) concentrates the point labels at two points to
the right and left of ∗. For G′′∗ we note that any cycle is supported [need to
establish terminology for this; maybe in “basic properties” section above] away from
∗. Thus any cycle lies in the image of the normal blob complex of a disjoint
union of two intervals, which is contractible by (3.2) and (3.1). Actually,
we need the further (easy) result that the inclusion G′′∗ → G′∗ induces an
isomorphism on H0.

Next we construct a degree 1 map (homotopy) h : F ′∗ → F ′∗ such that
for all x ∈ F ′∗ we have

x− ∂h(x)− h(∂x) ∈ F ′′∗ .

Since F ′0 = F ′′0 , we can take h0 = 0. Let x ∈ F ′1, with single blob B ⊂ S1.
If ∗ /∈ B, then x ∈ F ′′1 and we define h1(x) = 0. If ∗ ∈ B, then we work
in the image of G′∗ and G′′∗ (with respect to B). Choose x′′ ∈ G′′1 such
that ∂x′′ = ∂x. Since G′∗ is contractible, there exists y ∈ G′2 such that
∂y = x− x′′. Define h1(x) = y. The general case is similar, except that we

12



have to take lower order homotopies into account. Let x ∈ F ′k. If ∗ is not
contained in any of the blobs of x, then define hk(x) = 0. Otherwise, let B
be the outermost blob of x containing ∗. By xxxx above, x = x′ • p, where
x′ is supported on B and p is supported away from B. So x′ ∈ G′l for some
l ≤ k. Choose x′′ ∈ G′′l such that ∂x′′ = ∂(x′ − hl−1∂x

′). Choose y ∈ G′l+1

such that ∂y = x′ − x′′ − hl−1∂x
′. Define hk(x) = y • p. This completes the

proof that i : F ′′∗ → F ′∗ is a homotopy equivalence. [need to say above more
clearly and settle on notation/terminology]

Finally, we show that F ′′∗ is contractible. [need to also show that H0 is the
right thing; easy, but I won’t do it now] Let x be a cycle in F ′′∗ . The union of
the supports of the diagrams in x does not contain ∗, so there exists a ball
B ⊂ S1 containing the union of the supports and not containing ∗. Adding
B as a blob to x gives a contraction. [need to say something else in degree zero]

This completes the proof that F∗(C ⊗ C) is homotopic to the 0-step
complex C.

Next we show that F∗(C) is homotopic [q-isom?] to B∗(S1) [...]

[still need to prove exactness claim]
[What else needs to be said to establish quasi-isomorphism to Hochschild com-

plex? Do we need a map from hoch to blob? Does the above exactness and con-
tractibility guarantee such a map without writing it down explicitly? Probably it’s
worth writing down an explicit map even if we don’t need to.]

5 Action of C∗(Diff(X))

Let CD∗(X) denote C∗(Diff(X)), the singular chain complex of the space
of diffeomorphisms of the n-manifold X (fixed on ∂X). For convenience, we
will permit the singular cells generating CD∗(X) to be more general than
simplices — they can be based on any linear polyhedron. [be more restrictive
here? does more need to be said?]

Proposition 5.1. For each n-manifold X there is a chain map

eX : CD∗(X)⊗ B∗(X)→ B∗(X).

On CD0(X)⊗B∗(X) it agrees with the obvious action of Diff(X) on B∗(X)
(Proposition (3.5)). For any splitting X = X1 ∪X2, the following diagram
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commutes

CD∗(X)⊗ B∗(X)
eX // B∗(X)

CD∗(X1)⊗ CD∗(X2)⊗ B∗(X1)⊗ B∗(X2)

eX1
⊗eX2

44

gl⊗ gl

OO

B∗(X1)⊗ B∗(X2)

gl

OO

Any other map satisfying the above two properties is homotopic to eX .

The proof will occupy the remainder of this section.

Let f : P ×X → X be a family of diffeomorphisms and S ⊂ X. We say
that f is supported on S if f(p, x) = f(q, x) for all x /∈ S and p, q ∈ P . Note
that if f is supported on S then it is also supported on any R ⊃ S.

Let U = {Uα} be an open cover of X. A k-parameter family of diffeo-
morphisms f : P ×X → X is adapted to U if there is a factorization

P = P1 × · · · × Pm

(for some m ≤ k) and families of diffeomorphisms

fi : Pi ×X → X

such that

• each fi(p, ·) : X → X is supported on some connected Vi ⊂ X;

• the Vi’s are mutually disjoint;

• each Vi is the union of at most ki of the Uα’s, where ki = dim(Pi); and

• f(p, ·) = f1(p1, ·) ◦ · · · ◦ fm(pm, ·) for all p = (p1, . . . , pm).

A chain x ∈ Ck(Diff(M)) is (by definition) adapted to U if is is the sum of
singular cells, each of which is adapted to U .

Lemma 5.2. Let x ∈ CDk(X) be a singular chain such that ∂x is adapted
to U . Then x is homotopic (rel boundary) to some x′ ∈ CDk(X) which is
adapted to U .

The proof will be given in Section 6.

Let B1, . . . , Bm be a collection of disjoint balls in X (e.g. the support
of a blob diagram). We say that f : P × X → X is compatible with {Bj}
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if f has support a disjoint collection of balls Di ⊂ X and for all i and j
either Bj ⊂ Di or Bj ∩ Di = ∅. A chain x ∈ CDk(X) is compatible with
{Bj} if it is a sum of singular cells, each of which is compatible. (Note
that we could strengthen the definition of compatibility to incorporate a
factorization condition, similar to the definition of “adapted to” above. The
weaker definition given here will suffice for our needs below.)

Corollary 5.3. Let x ∈ CDk(X) be a singular chain such that ∂x is compat-
ible with {Bj}. Then x is homotopic (rel boundary) to some x′ ∈ CDk(X)
which is compatible with {Bj}.

Proof. This will follow from Lemma 5.2 for appropriate choice of cover U =
{Uα}. Let Uα1 , . . . , Uαk be any k open sets of U , and let V1, . . . , Vm be the
connected components of Uα1 ∪ · · · ∪ Uαk . Choose U fine enough so that
there exist disjoint balls B′j ⊃ Bj such that for all i and j either Vi ⊂ B′j or
Vi ∩B′j = ∅.

Apply Lemma 5.2 first to each singular cell fi of ∂x, with the (compat-
ible) support of fi in place of X. This insures that the resulting homotopy
hi is compatible. Now apply Lemma 5.2 to x+

∑
hi. [actually, need to start

with the 0-skeleton of ∂x, then 1-skeleton, etc.; fix this]

6 Families of Diffeomorphisms

Lo, the proof of Lemma (5.2):
[should this be an appendix instead?]
[for pedagogical reasons, should do k = 1, 2 cases first; probably do this in later

draft]
[not sure what the best way to deal with boundary is; for now just give main

argument, worry about boundary later]
Recall that we are given an open cover U = {Uα} and an x ∈ CDk(X)

such that ∂x is adapted to U . We must find a homotopy of x (rel boundary)
to some x′ ∈ CDk(X) which is adapted to U .

Let {rα : X → [0, 1]} be a partition of unity for U .
As a first approximation to the argument we will eventually make, let’s

replace x with a single singular cell

f : P ×X → X.

Also, we’ll ignore for now issues around ∂P .
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Our homotopy will have the form

F : I × P ×X → X

(t, p, x) 7→ f(u(t, p, x), x)

for some function
u : I × P ×X → P.

First we describe u, then we argue that it does what we want it to do.
For each cover index α choose a cell decomposition Kα of P . The various

Kα should be in general position with respect to each other. We will see
below that the Kα’s need to be sufficiently fine in order to insure that
F above is a homotopy through diffeomorphisms of X and not merely a
homotopy through maps X → X.

Let L be the union of all the Kα’s. L is itself a cell decomposition of
P . [next two sentences not needed?] To each cell a of L we associate the tuple
(cα), where cα is the codimension of the cell of Kα which contains c. Since
the Kα’s are in general position, we have

∑
cα ≤ k.

Let J denote the handle decomposition of P corresponding to L. Each
i-handle C of J has an i-dimensional tangential coordinate and, more im-
portantly, a k−i-dimensional normal coordinate.

For each k-cell c of each Kα, choose a point pc ∈ c ⊂ P . Let D be a
k-handle of J , and let d also denote the corresponding k-cell of L. To D we
associate the tuple (cα) of k-cells of the Kα’s which contain d, and also the
corresponding tuple (pcα) of points in P .

For p ∈ D we define

u(t, p, x) = (1− t)p+ t
∑
α

rα(x)pcα .

(Recall that P is a single linear cell, so the weighted average of points of P
makes sense.)

So far we have defined u(t, p, x) when p lies in a k-handle of J . For
handles of J of index less than k, we will define u to interpolate between
the values on k-handles defined above.

If p lies in a k−1-handle E, let η : E → [0, 1] be the normal coordinate of
E. In particular, η is equal to 0 or 1 only at the intersection of E with a k-
handle. Let β be the index of the Kβ containing the k−1-cell corresponding
to E. Let q0, q1 ∈ P be the points associated to the two k-cells of Kβ

adjacent to the k−1-cell corresponding to E. For p ∈ E, define

u(t, p, x) = (1− t)p+ t

∑
α 6=β

rα(x)pcα + rβ(x)(η(p)q1 + (1− η(p))q0)

 .
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In general, for E a k−j-handle, there is a normal coordinate η : E → R,
where R is some j-dimensional polyhedron. The vertices of R are associated
to k-cells of the Kα, and thence to points of P . If we triangulate R (without
introducing new vertices), we can linearly extend a map from the vertices
of R into P to a map of all of R into P . Let N be the set of all β for
which Kβ has a k-cell whose boundary meets the k−j-cell corresponding to
E. For each β ∈ N , let {qβi} be the set of points in P associated to the
aforementioned k-cells. Now define, for p ∈ E,

u(t, p, x) = (1− t)p+ t

∑
α/∈N

rα(x)pcα +
∑
β∈N

rβ(x)

(∑
i

ηβi(p) · qβi

) .

Here ηβi(p) is the weight given to qβi by the linear extension mentioned
above.

This completes the definition of u : I × P ×X → P .

Next we verify that u has the desired properties.
Since u(0, p, x) = p for all p ∈ P and x ∈ X, F (0, p, x) = f(p, x) for all

p and x. Therefore F is a homotopy from f to something.
Next we show that the Kα’s are sufficiently fine cell decompositions,

then F is a homotopy through diffeomorphisms. We must show that the
derivative ∂F

∂x (t, p, x) is non-singular for all (t, p, x). We have

∂F

∂x
=
∂f

∂x
+
∂f

∂p

∂u

∂x
.

Since f is a family of diffeomorphisms, ∂f∂x is non-singular and [bounded away
from zero, or something like that]. (Recall that X and P are compact.) Also,
∂f
∂p is bounded. So if we can insure that ∂u

∂x is sufficiently small, we are
done. It follows from Equation xxxx above that ∂u

∂x depends on ∂rα
∂x and the

differences amongst the various pcα ’s and qβi’s. These differences are small
if the cell decompositions Kα are sufficiently fine. This completes the proof
that F is a homotopy through diffeomorphisms.

Next we show that for each handle D ⊂ P , F (1, ·, ·) : D × X → X is
a singular cell adapted to U . This will complete the proof of the lemma.
[except for boundary issues and the ‘P is a cell’ assumption]

Let j be the codimension of D. (Or rather, the codimension of its corre-
sponding cell. From now on we will not make a distinction between handle
and corresponding cell.) Then j = j1 + · · ·+ jm, 0 ≤ m ≤ k, where the ji’s
are the codimensions of the Kα cells of codimension greater than 0 which
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intersect to form D. We will show that if the relevant Uα’s are disjoint, then
F (1, ·, ·) : D×X → X is a product of singular cells of dimensions j1, . . . , jm.
If some of the relevant Uα’s intersect, then we will get a product of singular
cells whose dimensions correspond to a partition of the ji’s. We will consider
some simple special cases first, then do the general case.

First consider the case j = 0 (and m = 0). A quick look at Equation
xxxx above shows that u(1, p, x), and hence F (1, p, x), is independent of
p ∈ P . So the corresponding map D → Diff(X) is constant.

Next consider the case j = 1 (and m = 1, j1 = 1). Now Equation yyyy
applies. We can write D = D′×I, where the normal coordinate η is constant
on D′. It follows that the singular cell D → Diff(X) can be written as a
product of a constant map D′ → Diff(X) and a singular 1-cell I → Diff(X).
The singular 1-cell is supported on Uβ, since rβ = 0 outside of this set.

Next case: j = 2, m = 1, j1 = 2. This is similar to the previous case,
except that the normal bundle is 2-dimensional instead of 1-dimensional.
We have that D → Diff(X) is a product of a constant singular k−2-cell and
a 2-cell with support Uβ.

Next case: j = 2, m = 2, j1 = j2 = 2. In this case the codimension 2
cell D is the intersection of two codimension 1 cells, from Kβ and Kγ . We
can write D = D′ × I × I, where the normal coordinates are constant on
D′, and the two I factors correspond to β and γ. If Uβ and Uγ are disjoint,
then we can factor D into a constant k−2-cell and two 1-cells, supported on
Uβ and Uγ respectively. If Uβ and Uγ intersect, then we can factor D into a
constant k−2-cell and a 2-cell supported on Uβ ∪ Uγ . [need to check that this
is true]

[finally, general case...]
[this completes proof]

7 A∞ action on the boundary

8 Gluing

9 Extension to ...

(Need to let the input n-category C be a graded thing (e.g. DGA or A∞
n-category).)
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10 What else?...

• Derive Hochschild standard results from blob point of view?

• n = 2 examples

• Kh

• dimension n+ 1

• should be clear about PL vs Diff; probably PL is better (or maybe
not)

• say what we mean by n-category, A∞ or E∞ n-category

• something about higher derived coend things (derived 2-coend, e.g.)
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