

The Blob Complex, part 2

Kevin Walker
(joint work with Scott Morrison)

slides and prepreprint available at canyon23.net/math/ (or the URLs Scott gave)

Goals:

- n-category definition optimized for TQFTs
- should be very easy to show that topological examples satisfy the axioms
- as simple as possible (but not simpler)
- both plain and infinity type categories
- also define modules, coends, tensor products, etc.

Goals:

- n-category definition optimized for TQFTs
- should be very easy to show that topological examples satisfy the axioms
- as simple as possible (but not simpler)
- both plain and infinity type categories
- also define modules, coends, tensor products, etc.

Main ideas:

- don't skeletonize (don't try to minimize generators, don't try to minimize relations)
- build in "strong" duality from the start
- non-recursive (don't need to know what an (n-1)-category is)

Ingredients for an n-category:
I. morphisms in dimensions 0 through n
2. domain/range/boundary
3. composition
4. identity morphisms
5. special behavior in dimension n

Morphisms

- Need to decide on "shape" of morphisms

Morphisms

- Need to decide on "shape" of morphisms

- We will allow morphisms to be of any shape, so long as it is homeomorphic to a ball

Morphisms (preliminary version): For any k-manifold X homeomorphic to the standard k-ball, we have a set of k-morphisms $\mathcal{C}_{k}(X)$.

Morphisms (preliminary version): For any k-manifold X homeomorphic to the standard k-ball, we have a set of k-morphisms $\mathcal{C}_{k}(X)$.

Morphisms: For each $0 \leq k \leq n$, we have a functor \mathcal{C}_{k} from the category of k-balls and homeomorphisms to the category of sets and bijections.

Morphisms (preliminary version): For any k-manifold X homeonorphic to the standard k-ball, we have a set of k-morphisms $\mathcal{C}_{k}(X)$.

Morphisms: For each $0 \leq k \leq n$, we have a functor \mathcal{C}_{k} from the category of k-balls and homeomorphisms to the category of sets and bijections.

Balls could be PL, topological, or smooth. Also unoriented, oriented, Spin, $\mathrm{Pin}_{ \pm}$. We will concentrate on the case of PL unoriented balls.

Examples

Let T be a topological space.
$\mathcal{C}_{k}\left(X^{k}\right)=\operatorname{Maps}(X \rightarrow T)$, for $k<n, X$ a k-ball.
$\mathcal{C}_{n}\left(X^{n}\right)=\operatorname{Maps}(X \rightarrow T)$ modulo homotopy rel boundary (fundamental n-groupoid of T)
$\mathcal{C}_{k}\left(X^{k}\right)=\operatorname{Maps}(X \rightarrow T)$, for $k<n, X$ a k-ball.
$\mathcal{C}_{n}\left(X^{n}\right)=C_{*}(\operatorname{Maps}(X \rightarrow T))$ (singular chains)
(∞ version of fundamental groupoid of T)
$\mathcal{C}_{k}\left(X^{k}\right)=\{$ embedded decorated cell complexes in X $\}$, for $k<n$.
$\mathcal{C}_{n}\left(X^{n}\right)=\{$ embedded decorated cell complexes in X$\}$ modulo isotopy and other local relations

$$
=q^{9}+q^{6}+q^{5}+q^{4}+q^{3}+q+2+q^{-1}+q^{-3}+q^{-4}+q^{-5}+q^{-6}+q^{-9}
$$

(Kuperberg)

More examples

Let A be a traditional linear n-category with strong duality (e.g. pivotal 2-category).
$\mathcal{C}_{k}\left(X^{k}\right)=\{A$-string diagrams in $X\}$, for $k<n$.
$\mathcal{C}_{n}\left(X^{n}\right)=\{$ finite linear combinations of A-string diagrams in $X\}$ modulo diagrams which evaluate to zero

$\mathcal{C}_{k}\left(X^{k}\right)=\{A$-string diagrams in $X\}$, for $k<n$. $\mathcal{C}_{n}\left(X^{n}\right)=$ blob complex of X based on A-string diagrams

Boundaries (domain and range), part 1: For each $0 \leq k \leq n-1$, we have a functor \mathcal{C}_{k} from the category of k-spheres and homeomorphisms to the category of sets and bijections.

Boundaries (domain and range), part 1: For each $0 \leq k \leq n-1$, we have a functor \mathcal{C}_{k} from the category of k-spheres and homeomorphisms to the category of sets and bijections.

Boundaries, part 2: For each k-ball X, we have a map of sets $\partial: \mathcal{C}(X) \rightarrow \mathcal{C}(\partial X)$. These maps, for various X, comprise a natural transformation of functors.

Boundaries (domain and range), part 1: For each $0 \leq k \leq n-1$, we have a functor \mathcal{C}_{k} from the category of k-spheres and homeomorphisms to the category of sets and bijections.

Boundaries, part 2: For each k-ball X, we have a map of sets $\partial: \mathcal{C}(X) \rightarrow \mathcal{C}(\partial X)$. These maps, for various X, comprise a natural transformation of functors.

Domain + range \rightarrow boundary: Let $S=B_{1} \cup_{E} B_{2}$, where S is a k-sphere $(0 \leq$ $k \leq n-1), B_{i}$ is a k-ball, and $E=B_{1} \cap B_{2}$ is a $k-1$-sphere. Let $\mathcal{C}\left(B_{1}\right) \times_{\mathcal{C}(E)} \mathcal{C}\left(B_{2}\right)$ denote the fibered product of the two maps $\partial: \mathcal{C}\left(B_{i}\right) \rightarrow \mathcal{C}(E)$. Then (axiom) we have an injective map

$$
\mathrm{gl}_{E}: \mathcal{C}\left(B_{1}\right) \times_{\mathcal{C}(E)} \mathcal{C}\left(B_{2}\right) \rightarrow \mathcal{C}(S)
$$

which is natural with respect to the actions of homeomorphisms.

- Let $\mathcal{C}(S)_{E} \subset \mathcal{C}(S)$ denote the image of gl_{E}
- Let $\mathcal{C}(S)_{E} \subset \mathcal{C}(S)$ denote the image of gl_{E}
- Given $c \in \mathcal{C}(\partial(X))$, let $\mathcal{C}(X ; c) \stackrel{\text { def }}{=} \partial^{-1}(c)$
- Let $\mathcal{C}(S)_{E} \subset \mathcal{C}(S)$ denote the image of gl_{E}
- Given $c \in \mathcal{C}(\partial(X))$, let $\mathcal{C}(X ; c) \stackrel{\text { def }}{=} \partial^{-1}(c)$

- Given $E \subset \partial X$, let $\mathcal{C}(X)_{E} \stackrel{\text { def }}{=} \partial^{-1}\left(\mathcal{C}(\partial X)_{E}\right)$
- Let $\mathcal{C}(S)_{E} \subset \mathcal{C}(S)$ denote the image of gl_{E}
- Given $c \in \mathcal{C}(\partial(X))$, let $\mathcal{C}(X ; c) \stackrel{\text { def }}{=} \partial^{-1}(c)$

- Given $E \subset \partial X$, let $\mathcal{C}(X)_{E} \stackrel{\text { def }}{=} \partial^{-1}\left(\mathcal{C}(\partial X)_{E}\right)$
- In most examples, we require that the sets $\mathcal{C}(X ; c)$ (for all n-balls X and all boundary conditions c) have extra structure, e.g. vector space or chain complex

Composition: Let $B=B_{1} \cup_{Y} B_{2}$, where B, B_{1} and B_{2} are k-balls ($0 \leq k \leq n$) and $Y=B_{1} \cap B_{2}$ is a $k-1$-ball. Let $E=\partial Y$, which is a $k-2$-sphere. Note that each of B, B_{1} and B_{2} has its boundary split into two $k-1$-balls by E. We have restriction (domain or range) maps $\mathcal{C}\left(B_{i}\right)_{E} \rightarrow \mathcal{C}(Y)$. Let $\mathcal{C}\left(B_{1}\right)_{E} \times_{\mathcal{C}(Y)} \mathcal{C}\left(B_{2}\right)_{E}$ denote the fibered product of these two maps. Then (axiom) we have a map

$$
\mathrm{gl}_{Y}: \mathcal{C}\left(B_{1}\right)_{E} \times_{\mathcal{C}(Y)} \mathcal{C}\left(B_{2}\right)_{E} \rightarrow \mathcal{C}(B)_{E}
$$

which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions to the intersection of the boundaries of B and B_{i}. If $k<n$ we require that gl_{Y} is injective. (For $k=n$, see below.)

Composition: Let $B=B_{1} \cup_{Y} B_{2}$, where B, B_{1} and B_{2} are k-balls ($0 \leq k \leq n$) and $Y=B_{1} \cap B_{2}$ is a $k-1$-ball. Let $E=\partial Y$, which is a $k-2$-sphere. Note that each of B, B_{1} and B_{2} has its boundary split into two $k-1$-balls by E. We have restriction (domain or range) maps $\mathcal{C}\left(B_{i}\right)_{E} \rightarrow \mathcal{C}(Y)$. Let $\mathcal{C}\left(B_{1}\right)_{E} \times_{\mathcal{C}(Y)} \mathcal{C}\left(B_{2}\right)_{E}$ denote the fibered product of these two maps. Then (axiom) we have a map

$$
\operatorname{gl}_{Y}: \mathcal{C}\left(B_{1}\right)_{E} \times_{\mathcal{C}(Y)} \mathcal{C}\left(B_{2}\right)_{E} \rightarrow \mathcal{C}(B)_{E}
$$

which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions to the intersection of the boundaries of B and B_{i}. If $k<n$ we require that gl_{Y} is injective. (For $k=n$, see below.)

Strict associativity: The composition (gluing) maps above are strictly associative.
| Multi-composition: Given any decomposition $B=B_{1} \cup \cdots \cup B_{m}$ of a k-ball into | small k-balls, there is a map from an appropriate subset (like a fibered product) of - $\mathcal{C}\left(B_{1}\right) \times \cdots \times \mathcal{C}\left(B_{m}\right)$ to $\mathcal{C}(B)$, and these various m-fold composition maps satisfy an \| operad-type strict associativity condition.

Product (identity) morphisms: Let X be a k-ball and D be an m-ball, with $k+m \leq n$. Then we have a map $\mathcal{C}(X) \rightarrow \mathcal{C}(X \times D)$, usually denoted $a \mapsto a \times D$ for $a \in \mathcal{C}(X)$. If $f: X \rightarrow X^{\prime}$ and $\tilde{f}: X \times D \rightarrow X^{\prime} \times D^{\prime}$ are maps such that the diagram

commutes, then we have

$$
\tilde{f}(a \times D)=f(a) \times D^{\prime} .
$$

Product morphisms are compatible with gluing (composition) in both factors:

$$
\left(a^{\prime} \times D\right) \bullet\left(a^{\prime \prime} \times D\right)=\left(a^{\prime} \bullet a^{\prime \prime}\right) \times D
$$

and

$$
\left(a \times D^{\prime}\right) \bullet\left(a \times D^{\prime \prime}\right)=a \times\left(D^{\prime} \bullet D^{\prime \prime}\right) .
$$

Product morphisms are associative:

$$
(a \times D) \times D^{\prime}=a \times\left(D \times D^{\prime}\right) .
$$

(Here we are implicitly using functoriality and the obvious homeomorphism ($X \times$ $D) \times D^{\prime} \rightarrow X \times\left(D \times D^{\prime}\right)$.) Product morphisms are compatible with restriction:

$$
\operatorname{res}_{X \times E}(a \times D)=a \times E
$$

for $E \subset \partial D$ and $a \in \mathcal{C}(X)$.

We need something a little more general than plain products

We need something a little more general than plain products

We need something a little more general than plain products

"extended isotopy"

Plain n -cat:

Extended isotopy invariance in dimension n : Let X be an n-ball and f : $X \rightarrow X$ be a homeomorphism which restricts to the identity on ∂X and is extended isotopic (rel boundary) to the identity. Then f acts trivially on $\mathcal{C}(X)$.

Plain n -cat:

Extended isotopy invariance in dimension n : Let X be an n-ball and f : $X \rightarrow X$ be a homeomorphism which restricts to the identity on ∂X and is extended isotopic (rel boundary) to the identity. Then f acts trivially on $\mathcal{C}(X)$.

Infinity n-cat:

Families of homeomorphisms act in dimension n. For each n-ball X and each $c \in \mathcal{C}(\partial X)$ we have a map of chain complexes

$$
C_{*}\left(\operatorname{Homeo}_{\partial}(X)\right) \otimes \mathcal{C}(X ; c) \rightarrow \mathcal{C}(X ; c) .
$$

Here C_{*} means singular chains and $\operatorname{Homeo}_{\partial}(X)$ is the space of homeomorphisms of X which fix ∂X. These action maps are required to be associative up to homotopy, and also compatible with composition (gluing).

Equivalences between this n-cat definition and more traditional ones (at least for $\mathrm{n}=1$ or 2)

Colimit construction

- Let \mathcal{C} be in n-category.
- We want to extend \mathcal{C} to arbitrary k-manifolds $Y, 0 \leq k \leq n$.

Colimit construction

- Let \mathcal{C} be in n-category.

- We want to extend \mathcal{C} to arbitrary k-manifolds $Y, 0 \leq k \leq n$.
- Let \mathcal{J} be the category (partially ordered set) whose objects are decompositions of Y into balls and who morphisms are anti-refinements (coarsenings) of these decompositions.

Colimit construction

- Let \mathcal{C} be in n-category.

- We want to extend \mathcal{C} to arbitrary k-manifolds $Y, 0 \leq k \leq n$.
- Let \mathcal{J} be the category (partially ordered set) whose objects are decompositions of Y into balls and who morphisms are anti-refinements (coarsenings) of these decompositions.
- There is functor which assigns to a decomposition $Y=\bigcup_{i} X_{i}$ the set (or vector space or chain complex) $\bigotimes_{i} \mathcal{C}\left(X_{i}\right)$.

Colimit construction

- Let \mathcal{C} be in n-category.

- We want to extend \mathcal{C} to arbitrary k-manifolds $Y, 0 \leq k \leq n$.
- Let \mathcal{J} be the category (partially ordered set) whose objects are decompositions of Y into balls and who morphisms are anti-refinements (coarsenings) of these decompositions.
- There is functor which assigns to a decomposition $Y=\bigcup_{i} X_{i}$ the set (or vector space or chain complex) $\bigotimes_{i} \mathcal{C}\left(X_{i}\right)$.
- Define $\mathcal{C}(Y)$ to be the colimit (or homotopy colimit) of this functor.

Newfangled blob complex

- Given an $A_{\infty} n$-category \mathcal{C}, we define the newfangled blob complex of an n-manifold M to be the above homotopy colimit $\mathcal{C}(M)$.

Newfangled blob complex

- Given an $A_{\infty} n$-category \mathcal{C}, we define the newfangled blob complex of an n-manifold M to be the above homotopy colimit $\mathcal{C}(M)$.
- Given a plain n-category C, we can construct an $A_{\infty} n$-category \mathcal{D} by defining $\mathcal{D}(X)=\mathcal{B}_{*}^{C}(X)$ for each n-ball X.

Newfangled blob complex

- Given an $A_{\infty} n$-category \mathcal{C}, we define the newfangled blob complex of an n-manifold M to be the above homotopy colimit $\mathcal{C}(M)$.
- Given a plain n-category C, we can construct an $A_{\infty} n$-category \mathcal{D} by defining $\mathcal{D}(X)=\mathcal{B}_{*}^{C}(X)$ for each n-ball X.
- \mathcal{D} is in some sense the free resolution of C as an $A_{\infty} n$-category.

Newfangled blob complex

- Given an $A_{\infty} n$-category \mathcal{C}, we define the newfangled blob complex of an n-manifold M to be the above homotopy colimit $\mathcal{C}(M)$.
- Given a plain n-category C, we can construct an $A_{\infty} n$-category \mathcal{D} by defining $\mathcal{D}(X)=\mathcal{B}_{*}^{C}(X)$ for each n-ball X.
- \mathcal{D} is in some sense the free resolution of C as an $A_{\infty} n$-category.
- Let $M^{n}=F^{n-k} \times Y^{k}$. Let C be a plain n-category. Let \mathcal{F} be the A_{∞} k-category which assigns to a k-ball X the old-fashioned blob complex $\mathcal{B}_{*}^{C}(X \times F)$.

Newfangled blob complex

- Given an $A_{\infty} n$-category \mathcal{C}, we define the newfangled blob complex of an n-manifold M to be the above homotopy colimit $\mathcal{C}(M)$.
- Given a plain n-category C, we can construct an $A_{\infty} n$-category \mathcal{D} by defining $\mathcal{D}(X)=\mathcal{B}_{*}^{C}(X)$ for each n-ball X.
- \mathcal{D} is in some sense the free resolution of C as an $A_{\infty} n$-category.
- Let $M^{n}=F^{n-k} \times Y^{k}$. Let C be a plain n-category. Let \mathcal{F} be the A_{∞} k-category which assigns to a k-ball X the old-fashioned blob complex $\mathcal{B}_{*}^{C}(X \times F)$.
- Theorem: $\mathcal{F}(Y) \simeq \mathcal{B}_{*}^{C}(F \times Y)$.

Newfangled blob complex

- Given an $A_{\infty} n$-category \mathcal{C}, we define the newfangled blob complex of an n-manifold M to be the above homotopy colimit $\mathcal{C}(M)$.
- Given a plain n-category C, we can construct an $A_{\infty} n$-category \mathcal{D} by defining $\mathcal{D}(X)=\mathcal{B}_{*}^{C}(X)$ for each n-ball X.
- \mathcal{D} is in some sense the free resolution of C as an $A_{\infty} n$-category.
- Let $M^{n}=F^{n-k} \times Y^{k}$. Let C be a plain n-category. Let \mathcal{F} be the A_{∞} k-category which assigns to a k-ball X the old-fashioned blob complex $\mathcal{B}_{*}^{C}(X \times F)$.
- Theorem: $\mathcal{F}(Y) \simeq \mathcal{B}_{*}^{C}(F \times Y)$.
- Corollary: $\mathcal{D}(M) \simeq \mathcal{B}_{*}^{C}(M)$ for any n-manifold M. (Proof: Let F above be a point.) So the old-fashioned and newfangled blob complexes are homotopy equivalent.

Modules

- Let \mathcal{C} be an n-category.
- Modules for \mathcal{C} are defined in a similar style.

Modules

- Let \mathcal{C} be an n-category.
- Modules for \mathcal{C} are defined in a similar style.
- A marked k-ball is a pair (B, M) which is homeomorphic to the standard pair $\left(B^{k}, B^{k-1}\right)$.

Modules

- Let \mathcal{C} be an n-category.
- Modules for \mathcal{C} are defined in a similar style.
- A marked k-ball is a pair (B, M) which is homeomorphic to the standard pair $\left(B^{k}, B^{k-1}\right)$.

- A \mathcal{C}-module \mathcal{M} is a collection of functors \mathcal{M}_{k} from the category of marked k-balls to the category of sets, $0 \leq k \leq n$.

Modules

- Let \mathcal{C} be an n-category.
- Modules for \mathcal{C} are defined in a similar style.
- A marked k-ball is a pair (B, M) which is homeomorphic to the standard pair $\left(B^{k}, B^{k-1}\right)$.

- A \mathcal{C}-module \mathcal{M} is a collection of functors \mathcal{M}_{k} from the category of marked k-balls to the category of sets, $0 \leq k \leq n$.
- In the top dimension n we have the same extra structure as \mathcal{C} (vector space, chain complex, ...).
- Motivating example: Let W be an $m+1$-manifold with non-empty boundary. Let \mathcal{E} be an $m+n$-category.
- Let \mathcal{C} be the n-category with $\mathcal{C}(X) \stackrel{\text { def }}{=} \mathcal{E}(X \times \partial W)$.
- Motivating example: Let W be an $m+1$-manifold with non-empty boundary. Let \mathcal{E} be an $m+n$-category.
- Let \mathcal{C} be the n-category with $\mathcal{C}(X) \stackrel{\text { def }}{=} \mathcal{E}(X \times \partial W)$.
- Define the \mathcal{C}-module \mathcal{M} by

$$
\mathcal{M}(M, B) \stackrel{\text { def }}{=} \mathcal{E}\left((B \times \partial W) \bigcup_{M \times \partial W}(M \times W)\right)
$$

- Two different ways of cutting a marked k-ball into two pieces, so two different kinds of composition. (One is composition within \mathcal{M}, the other is the action of \mathcal{C} on \mathcal{M}.)

action

om-composition
- Two different ways of cutting a marked k-ball into two pieces, so two different kinds of composition. (One is composition within \mathcal{M}, the other is the action of \mathcal{C} on \mathcal{M}.)

- Various kinds of mixed strict associativity.

- Two different ways of cutting a marked k-ball into two pieces, so two different kinds of composition. (One is composition within \mathcal{M}, the other is the action of \mathcal{C} on \mathcal{M}.)

- Various kinds of mixed strict associativity.

- \mathcal{M} can be thought of as a collection of $n-1$-categories with some extra structure.
- Two different ways of cutting a marked k-ball into two pieces, so two different kinds of composition. (One is composition within \mathcal{M}, the other is the action of \mathcal{C} on \mathcal{M}.)

- Various kinds of mixed strict associativity.

- \mathcal{M} can be thought of as a collection of $n-1$-categories with some extra structure.
- For $n=1,2$ this is equivalent to the usual notion of module.

Decorated colimit construction

- Let W be a k-manifold. Let Y_{i} be a collection of disjoint codimension 0 submanifolds of ∂W.
- Let \mathcal{C} be an n-category and $\mathcal{N}=\left\{\mathcal{N}_{i}\right\}$ be a collection of \mathcal{C}-modules, thought of as labels of $\left\{Y_{i}\right\}$.

Decorated colimit construction

- Let W be a k-manifold. Let Y_{i} be a collection of disjoint codimension 0 submanifolds of ∂W.
- Let \mathcal{C} be an n-category and $\mathcal{N}=\left\{\mathcal{N}_{i}\right\}$ be a collection of \mathcal{C}-modules, thought of as labels of $\left\{Y_{i}\right\}$.
- We can use a variation on the above colimit construction to define a set (or vector space or chain complex if $k=n) \mathcal{C}(W, \mathcal{N})$.

Decorated colimit construction

- Let W be a k-manifold. Let Y_{i} be a collection of disjoint codimension 0 submanifolds of ∂W.
- Let \mathcal{C} be an n-category and $\mathcal{N}=\left\{\mathcal{N}_{i}\right\}$ be a collection of \mathcal{C}-modules, thought of as labels of $\left\{Y_{i}\right\}$.
- We can use a variation on the above colimit construction to define a set (or vector space or chain complex if $k=n) \mathcal{C}(W, \mathcal{N})$.
- The object of the colimit are decompositions of W into (plain) balls X_{j} and marked balls (B_{l}, M_{l}), with $M_{l}=B_{l} \cap\left\{Y_{i}\right\}$.

$$
\theta_{2} N\left(B, \mu_{1}\right)
$$

Decorated colimit construction

- Let W be a k-manifold. Let Y_{i} be a collection of disjoint codimension 0 submanifolds of ∂W.
- Let \mathcal{C} be an n-category and $\mathcal{N}=\left\{\mathcal{N}_{i}\right\}$ be a collection of \mathcal{C}-modules, thought of as labels of $\left\{Y_{i}\right\}$.
- We can use a variation on the above colimit construction to define a set (or vector space or chain complex if $k=n) \mathcal{C}(W, \mathcal{N})$.
- The object of the colimit are decompositions of W into (plain) balls X_{j} and marked balls (B_{l}, M_{l}), with $M_{l}=B_{l} \cap\left\{Y_{i}\right\}$.

- This defines an $n-k$-category which assigns $\mathcal{C}(D \times W, \mathcal{N})$ to a ball D. (Here \mathcal{N}_{i} labels $D \times Y_{i}$.)

Tensor products and gluing

- As a simple special case of this construction, given \mathcal{C}-modules \mathcal{N}_{1} and \mathcal{N}_{2}, define the tensor product $\mathcal{N}_{1} \otimes \mathcal{N}_{2}$ (an $n-1$-category) to be the result of taking W to be an interval and letting \mathcal{N}_{1} and \mathcal{N}_{2} label the endpoints of the interval.

Tensor products and gluing

- As a simple special case of this construction, given \mathcal{C}-modules \mathcal{N}_{1} and \mathcal{N}_{2}, define the tensor product $\mathcal{N}_{1} \otimes \mathcal{N}_{2}$ (an n-1-category) to be the result of taking W to be an interval and letting \mathcal{N}_{1} and \mathcal{N}_{2} label the endpoints of the interval.

- Gluing theorem: Let $M^{n-k}=M_{1} \cup_{Y} M_{2}$. Let \mathcal{C} be an n-category. The above constructions give a k-category $\mathcal{C}(M)$, a $k-1$-category $\mathcal{C}(Y)$, and two $\mathcal{C}(Y)$-modules $\mathcal{C}\left(M_{i}\right)$. Then

$$
\mathcal{C}(M) \simeq \mathcal{C}\left(M_{1}\right) \otimes_{\mathcal{C}(Y)} \mathcal{C}\left(M_{2}\right) .
$$

