The Blob Complex, part 2

Kevin Walker (joint work with Scott Morrison)

slides available at canyon23.net/math/

Goals:

- n-category definition optimized for TQFTs
- should be very easy to show that topological examples satisfy the axioms
- as simple as possible (but not simpler)
- both plain and infinity type categories
- also define modules, coends, tensor products, etc.

Goals:

- n-category definition optimized for TQFTs
- should be very easy to show that topological examples satisfy the axioms
- as simple as possible (but not simpler)
- both plain and infinity type categories
- also define modules, coends, tensor products, etc.

Main ideas:

- don't skeletonize (don't try to minimize generators, don't try to minimize relations)
- build in "strong" duality from the start
- non-recursive (don't need to know what an (n-1)-category is)

Ingredients for an n-category:

- I. morphisms in dimensions 0 through n
- 2. domain/range/boundary
- 3. composition
- 4. identity morphisms
- 5. special behavior in dimension n

Morphisms

• Need to decide on "shape" of morphisms

Morphisms

• Need to decide on "shape" of morphisms

• We will allow morphisms to be of **any** shape, so long as it is homeomorphic to a ball

Morphisms (preliminary version): For any k-manifold X homeomorphic to the standard k-ball, we have a set of k-morphisms $C_k(X)$.

Morphisms (preliminary version): For any k-manifold X homeomorphic to the standard k-ball, we have a set of k-morphisms $C_k(X)$.

Morphisms: For each $0 \le k \le n$, we have a functor C_k from the category of k-balls and homeomorphisms to the category of sets and bijections.

Morphisms (preliminary version): For any k-manifold X homeomorphic to the standard k-ball, we have a set of k-morphisms $C_k(X)$.

Morphisms: For each $0 \le k \le n$, we have a functor C_k from the category of k-balls and homeomorphisms to the category of sets and bijections.

Balls could be PL, topological, or smooth. Also unoriented, oriented, Spin, Pin_{\pm} . We will concentrate on the case of PL unoriented balls.

Examples

Let T be a topological space. $C_k(X^k) = Maps(X \to T)$, for k < n, X a k-ball. $C_n(X^n) = Maps(X \to T)$ modulo homotopy rel boundary (fundamental groupoid of T)

 $C_k(X^k) = \text{Maps}(X \to T)$, for k < n, X a k-ball. $C_n(X^n) = C_*(\text{Maps}(X \to T))$ (singular chains) (∞ version of fundamental groupoid of T) $C_k(X^k) = \{ \text{embedded decorated cell complexes in X} \}, \text{ for } k < n.$ $C_n(X^n) = \{ \text{embedded decorated cell complexes in X} \} \text{ modulo isotopy and other local relations} \}$

Let A be a traditional linear n-category with strong duality (e.g. pivotal 2-category).

 $C_k(X^k) = \{A \text{-string diagrams in } X\}, \text{ for } k < n.$ $C_n(X^n) = \{\text{finite linear combinations of } A \text{-string diagrams in } X\} \text{ modulo diagrams which evaluate to zero}$

$$C_k(X^k) = \{A \text{-string diagrams in } X\}, \text{ for } k < n.$$

 $C_n(X^n) = \text{blob complex of } X \text{ based on } A \text{-string diagrams}$

Boundaries (domain and range), part 1: For each $0 \le k \le n-1$, we have a functor C_k from the category of k-spheres and homeomorphisms to the category of sets and bijections.

Boundaries (domain and range), part 1: For each $0 \le k \le n-1$, we have a functor C_k from the category of k-spheres and homeomorphisms to the category of sets and bijections.

Boundaries, part 2: For each k-ball X, we have a map of sets $\partial : \mathcal{C}(X) \to \mathcal{C}(\partial X)$. These maps, for various X, comprise a natural transformation of functors. **Boundaries (domain and range), part 1:** For each $0 \le k \le n-1$, we have a functor C_k from the category of k-spheres and homeomorphisms to the category of sets and bijections.

Boundaries, part 2: For each k-ball X, we have a map of sets $\partial : \mathcal{C}(X) \to \mathcal{C}(\partial X)$. These maps, for various X, comprise a natural transformation of functors.

Domain + range \rightarrow boundary: Let $S = B_1 \cup_E B_2$, where S is a k-sphere ($0 \leq k \leq n-1$), B_i is a k-ball, and $E = B_1 \cap B_2$ is a k-1-sphere. Let $C(B_1) \times_{C(E)} C(B_2)$ denote the fibered product of the two maps $\partial : C(B_i) \rightarrow C(E)$. Then (axiom) we have an injective map

 $\operatorname{gl}_E : \mathcal{C}(B_1) \times_{\mathcal{C}(E)} \mathcal{C}(B_2) \to \mathcal{C}(S)$

which is natural with respect to the actions of homeomorphisms.

• Let $\mathcal{C}(S)_E \subset \mathcal{C}(S)$ denote the image of gl_E

- Let $\mathcal{C}(S)_E \subset \mathcal{C}(S)$ denote the image of gl_E
 - Given $c \in \mathcal{C}(\partial(X))$, let $\mathcal{C}(X; c) \stackrel{\text{def}}{=} \partial^{-1}(c)$

- Let $\mathcal{C}(S)_E \subset \mathcal{C}(S)$ denote the image of gl_E
 - Given $c \in \mathcal{C}(\partial(X))$, let $\mathcal{C}(X; c) \stackrel{\text{def}}{=} \partial^{-1}(c)$
 - Given $E \subset \partial X$, let $\mathcal{C}(X)_E \stackrel{\text{def}}{=} \partial^{-1}(\mathcal{C}(\partial X)_E)$

- Let $\mathcal{C}(S)_E \subset \mathcal{C}(S)$ denote the image of gl_E
 - Given $c \in \mathcal{C}(\partial(X))$, let $\mathcal{C}(X; c) \stackrel{\text{def}}{=} \partial^{-1}(c)$

• In most examples, we require that the sets $\mathcal{C}(X; c)$ (for all *n*-balls X and all boundary conditions c) have extra structure, e.g. vector space or chain complex

Composition: Let $B = B_1 \cup_Y B_2$, where B, B_1 and B_2 are k-balls ($0 \le k \le n$) and $Y = B_1 \cap B_2$ is a k-1-ball. Let $E = \partial Y$, which is a k-2-sphere. Note that each of B, B_1 and B_2 has its boundary split into two k-1-balls by E. We have restriction (domain or range) maps $C(B_i)_E \to C(Y)$. Let $C(B_1)_E \times_{C(Y)} C(B_2)_E$ denote the fibered product of these two maps. Then (axiom) we have a map

 $\operatorname{gl}_Y : \mathcal{C}(B_1)_E \times_{\mathcal{C}(Y)} \mathcal{C}(B_2)_E \to \mathcal{C}(B)_E$

which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions to the intersection of the boundaries of B and B_i . If k < n we require that gl_Y is injective. (For k = n, see below.)

Composition: Let $B = B_1 \cup_Y B_2$, where B, B_1 and B_2 are k-balls ($0 \le k \le n$) and $Y = B_1 \cap B_2$ is a k-1-ball. Let $E = \partial Y$, which is a k-2-sphere. Note that each of B, B_1 and B_2 has its boundary split into two k-1-balls by E. We have restriction (domain or range) maps $C(B_i)_E \to C(Y)$. Let $C(B_1)_E \times_{C(Y)} C(B_2)_E$ denote the fibered product of these two maps. Then (axiom) we have a map

 $\operatorname{gl}_Y : \mathcal{C}(B_1)_E \times_{\mathcal{C}(Y)} \mathcal{C}(B_2)_E \to \mathcal{C}(B)_E$

which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions to the intersection of the boundaries of B and B_i . If k < n we require that gl_Y is injective. (For k = n, see below.)

Strict associativity: The composition (gluing) maps above are strictly associative.

Multi-composition: Given any decomposition $B = B_1 \cup \cdots \cup B_m$ of a k-ball into small k-balls, there is a map from an appropriate subset (like a fibered product) of $C(B_1) \times \cdots \times C(B_m)$ to C(B), and these various m-fold composition maps satisfy an operad-type strict associativity condition.

Product (identity) morphisms: Let X be a k-ball and D be an m-ball, with $k+m \leq n$. Then we have a map $\mathcal{C}(X) \to \mathcal{C}(X \times D)$, usually denoted $a \mapsto a \times D$ for $a \in \mathcal{C}(X)$. If $f: X \to X'$ and $\tilde{f}: X \times D \to X' \times D'$ are maps such that the diagram

commutes, then we have

$$\tilde{f}(a \times D) = f(a) \times D'.$$

Product morphisms are compatible with gluing (composition) in both factors:

$$(a' \times D) \bullet (a'' \times D) = (a' \bullet a'') \times D$$

and

$$(a \times D') \bullet (a \times D'') = a \times (D' \bullet D'').$$

Product morphisms are associative:

$$(a \times D) \times D' = a \times (D \times D').$$

(Here we are implicitly using functoriality and the obvious homeomorphism $(X \times D) \times D' \to X \times (D \times D')$.) Product morphisms are compatible with restriction:

$$\operatorname{res}_{X \times E}(a \times D) = a \times E$$

for $E \subset \partial D$ and $a \in \mathcal{C}(X)$.

We need something a little more general than plain products

We need something a little more general than plain products

We need something a little more general than plain products

"extended isotopy"

Plain n-cat:

Extended isotopy invariance in dimension n: Let X be an n-ball and f: $X \to X$ be a homeomorphism which restricts to the identity on ∂X and is extended isotopic (rel boundary) to the identity. Then f acts trivially on C(X).

Plain n-cat:

Extended isotopy invariance in dimension n: Let X be an n-ball and f: $X \to X$ be a homeomorphism which restricts to the identity on ∂X and is extended isotopic (rel boundary) to the identity. Then f acts trivially on C(X).

Infinity n-cat:

Families of homeomorphisms act in dimension *n***.** For each *n*-ball X and each $c \in C(\partial X)$ we have a map of chain complexes

 $C_*(\operatorname{Homeo}_{\partial}(X)) \otimes \mathcal{C}(X;c) \to \mathcal{C}(X;c).$

Here C_* means singular chains and Homeo $\partial(X)$ is the space of homeomorphisms of X which fix ∂X . These action maps are required to be associative up to homotopy, and also compatible with composition (gluing).

Equivalences between this n-cat definition and more traditional ones (at least for n=1 or 2)

A-string diagrams with canonical velations M- cat A "topological" n-cat () Vestvict e to standard K-ball, OSKSY

- Let ${\mathcal C}$ be in *n*-category.
- We want to extend \mathcal{C} to arbitrary k-manifolds $Y, 0 \leq k \leq n$.

- Let \mathcal{C} be in *n*-category.
- We want to extend C to arbitrary k-manifolds $Y, 0 \le k \le n$.
- Let \mathcal{J} be the category (partially ordered set) whose objects are decompositions of Y into balls and who morphisms are anti-refinements (coarsenings) of these decompositions.

- Let \mathcal{C} be in *n*-category.
- We want to extend \mathcal{C} to arbitrary k-manifolds $Y, 0 \leq k \leq n$.
- Let \mathcal{J} be the category (partially ordered set) whose objects are decompositions of Y into balls and who morphisms are anti-refinements (coarsenings) of these decompositions.
 - There is functor which assigns to a decomposition $Y = \bigcup_i X_i$ the set (or vector space or chain complex) $\bigotimes_i C(X_i)$.

- Let \mathcal{C} be in *n*-category.
- We want to extend \mathcal{C} to arbitrary k-manifolds $Y, 0 \leq k \leq n$.
- Let \mathcal{J} be the category (partially ordered set) whose objects are decompositions of Y into balls and who morphisms are anti-refinements (coarsenings) of these decompositions.
 - There is functor which assigns to a decomposition $Y = \bigcup_i X_i$ the set (or vector space or chain complex) $\bigotimes_i C(X_i)$.
 - Define $\mathcal{C}(Y)$ to be the colimit (or homotopy colimit) of this functor.

• Given an A_{∞} *n*-category \mathcal{C} , we define the newfangled blob complex of an *n*-manifold M to be the above homotopy colimit $\mathcal{C}(M)$.

- Given an A_{∞} *n*-category \mathcal{C} , we define the newfangled blob complex of an *n*-manifold M to be the above homotopy colimit $\mathcal{C}(M)$.
- Given a plain *n*-category C, we can construct an A_{∞} *n*-category \mathcal{D} by defining $\mathcal{D}(X) = \mathcal{B}^{C}_{*}(X)$ for each *n*-ball X.

- Given an A_{∞} *n*-category \mathcal{C} , we define the newfangled blob complex of an *n*-manifold M to be the above homotopy colimit $\mathcal{C}(M)$.
- Given a plain *n*-category C, we can construct an A_{∞} *n*-category \mathcal{D} by defining $\mathcal{D}(X) = \mathcal{B}^{C}_{*}(X)$ for each *n*-ball X.
 - \mathcal{D} is in some sense the free resolution of C as an A_{∞} *n*-category.

- Given an A_{∞} *n*-category \mathcal{C} , we define the newfangled blob complex of an *n*-manifold M to be the above homotopy colimit $\mathcal{C}(M)$.
- Given a plain *n*-category C, we can construct an A_{∞} *n*-category \mathcal{D} by defining $\mathcal{D}(X) = \mathcal{B}^{C}_{*}(X)$ for each *n*-ball X.
 - \mathcal{D} is in some sense the free resolution of C as an A_{∞} *n*-category.
 - Let $M^n = F^{n-k} \times Y^k$. Let C be a plain *n*-category. Let \mathcal{F} be the A_{∞} *k*-category which assigns to a *k*-ball X the old-fashioned blob complex $\mathcal{B}^C_*(X \times F)$.

- Given an A_{∞} *n*-category \mathcal{C} , we define the newfangled blob complex of an *n*-manifold M to be the above homotopy colimit $\mathcal{C}(M)$.
- Given a plain *n*-category C, we can construct an A_{∞} *n*-category \mathcal{D} by defining $\mathcal{D}(X) = \mathcal{B}^{C}_{*}(X)$ for each *n*-ball X.
 - \mathcal{D} is in some sense the free resolution of C as an A_{∞} *n*-category.
 - Let $M^n = F^{n-k} \times Y^k$. Let C be a plain *n*-category. Let \mathcal{F} be the A_{∞} *k*-category which assigns to a *k*-ball X the old-fashioned blob complex $\mathcal{B}^C_*(X \times F)$.
 - Theorem: $\mathcal{F}(Y) \simeq \mathcal{B}^C_*(F \times Y)$.

- Given an A_{∞} *n*-category \mathcal{C} , we define the newfangled blob complex of an *n*-manifold M to be the above homotopy colimit $\mathcal{C}(M)$.
- Given a plain *n*-category C, we can construct an A_{∞} *n*-category \mathcal{D} by defining $\mathcal{D}(X) = \mathcal{B}^{C}_{*}(X)$ for each *n*-ball X.
 - \mathcal{D} is in some sense the free resolution of C as an A_{∞} *n*-category.
 - Let $M^n = F^{n-k} \times Y^k$. Let C be a plain *n*-category. Let \mathcal{F} be the A_{∞} *k*-category which assigns to a *k*-ball X the old-fashioned blob complex $\mathcal{B}^C_*(X \times F)$.
 - Theorem: $\mathcal{F}(Y) \simeq \mathcal{B}^C_*(F \times Y)$.
- Corollary: $\mathcal{D}(M) \simeq \mathcal{B}^C_*(M)$ for any *n*-manifold *M*. (Proof: Let *F* above be a point.) So the old-fashioned and newfangled blob complexes are homotopy equivalent.

- Let \mathcal{C} be an *n*-category.
 - $\bullet\,$ Modules for ${\mathcal C}$ are defined in a similar style.

- Let \mathcal{C} be an *n*-category.
 - $\bullet\,$ Modules for ${\mathcal C}$ are defined in a similar style.
 - A marked k-ball is a pair (B, M) which is homeomorphic to the standard pair (B^k, B^{k-1}).

- Let \mathcal{C} be an *n*-category.
 - $\bullet\,$ Modules for ${\mathcal C}$ are defined in a similar style.
 - A marked k-ball is a pair (B, M) which is homeomorphic to the standard pair (B^k, B^{k-1}).

• A C-module \mathcal{M} is a collection of functors \mathcal{M}_k from the category of marked k-balls to the category of sets, $0 \leq k \leq n$.

- Let \mathcal{C} be an *n*-category.
 - Modules for \mathcal{C} are defined in a similar style.
 - A marked k-ball is a pair (B, M) which is homeomorphic to the standard pair (B^k, B^{k-1}).

- A C-module \mathcal{M} is a collection of functors \mathcal{M}_k from the category of marked k-balls to the category of sets, $0 \leq k \leq n$.
- In the top dimension n we have the same extra structure as C (vector space, chain complex, ...).

- Motivating example: Let W be an m+1-manifold with non-empty boundary. Let \mathcal{E} be an m+n-category.
 - Let \mathcal{C} be the *n*-category with $\mathcal{C}(X) \stackrel{\text{def}}{=} \mathcal{E}(X \times \partial W)$.

- Motivating example: Let W be an m+1-manifold with non-empty boundary. Let \mathcal{E} be an m+n-category.
 - Let \mathcal{C} be the *n*-category with $\mathcal{C}(X) \stackrel{\text{def}}{=} \mathcal{E}(X \times \partial W)$.
 - $\bullet\,$ Define the ${\mathcal C}\text{-module}\,\,{\mathcal M}\,$ by

$$\mathcal{M}(M,B) \stackrel{\mathrm{def}}{=} \mathcal{E}\left((B \times \partial W) \bigcup_{M \times \partial W} (M \times W)\right).$$

action

• Various kinds of mixed strict associativity.

M-composition

action

M-composition

• Various kinds of mixed strict associativity.

• \mathcal{M} can be thought of as a collection of n-1-categories with some extra structure.

action

M-composition

Various kinds of mixed strict associativity.

- \mathcal{M} can be thought of as a collection of n-1-categories with some extra structure.
- For n = 1, 2 this is equivalent to the usual notion of module.

- Let W be a k-manifold. Let Y_i be a collection of disjoint codimension 0 submanifolds of ∂W .
- Let \mathcal{C} be an *n*-category and $\mathcal{N} = \{\mathcal{N}_i\}$ be a collection of \mathcal{C} -modules, thought of as labels of $\{Y_i\}$.

- Let W be a k-manifold. Let Y_i be a collection of disjoint codimension 0 submanifolds of ∂W .
- Let \mathcal{C} be an *n*-category and $\mathcal{N} = \{\mathcal{N}_i\}$ be a collection of \mathcal{C} -modules, thought of as labels of $\{Y_i\}$.
- We can use a variation on the above colimit construction to define a set (or vector space or chain complex if k = n) C(W, N).

- Let W be a k-manifold. Let Y_i be a collection of disjoint codimension 0 submanifolds of ∂W .
- Let \mathcal{C} be an *n*-category and $\mathcal{N} = \{\mathcal{N}_i\}$ be a collection of \mathcal{C} -modules, thought of as labels of $\{Y_i\}$.
- We can use a variation on the above colimit construction to define a set (or vector space or chain complex if k = n) C(W, N).
- The object of the colimit are decompositions of W into (plain) balls X_j and marked balls (B_l, M_l) , with $M_l = B_l \cap \{Y_i\}$.

- Let W be a k-manifold. Let Y_i be a collection of disjoint codimension 0 submanifolds of ∂W .
- Let \mathcal{C} be an *n*-category and $\mathcal{N} = \{\mathcal{N}_i\}$ be a collection of \mathcal{C} -modules, thought of as labels of $\{Y_i\}$.
- We can use a variation on the above colimit construction to define a set (or vector space or chain complex if k = n) C(W, N).
- The object of the colimit are decompositions of W into (plain) balls X_j and marked balls (B_l, M_l) , with $M_l = B_l \cap \{Y_i\}$.

• This defines an n-k-category which assigns $\mathcal{C}(D \times W, \mathcal{N})$ to a ball D. (Here \mathcal{N}_i labels $D \times Y_i$.)

Tensor products and gluing

• As a simple special case of this construction, given C-modules \mathcal{N}_1 and \mathcal{N}_2 , define the tensor product $\mathcal{N}_1 \otimes \mathcal{N}_2$ (an *n*-1-category) to be the result of taking W to be an interval and letting \mathcal{N}_1 and \mathcal{N}_2 label the endpoints of the interval.

Tensor products and gluing

• As a simple special case of this construction, given C-modules \mathcal{N}_1 and \mathcal{N}_2 , define the tensor product $\mathcal{N}_1 \otimes \mathcal{N}_2$ (an *n*-1-category) to be the result of taking W to be an interval and letting \mathcal{N}_1 and \mathcal{N}_2 label the endpoints of the interval.

Gluing theorem: Let M^{n-k} = M₁ ∪_Y M₂. Let C be an n-category. The above constructions give a k-category C(M), a k-1-category C(Y), and two C(Y)-modules C(M_i). Then

 $\mathcal{C}(M) \simeq \mathcal{C}(M_1) \otimes_{\mathcal{C}(Y)} \mathcal{C}(M_2).$

