
BLOB HOMOLOGY

SCOTT MORRISON AND KEVIN WALKER

1. INTRODUCTION

(motivation, summary/outline, etc.)
(motivation: (1) restore exactness in pictures-mod-relations; (1’) add relations-

amongst-relations etc. to pictures-mod-relations; (2) want answer independent of
handle decomp (i.e. don’t just go from coend to derived coend (e.g. Hochschild
homology)); (3) ... )

2. DEFINITIONS

2.1. Fields. Fix a top dimension n.
A system of fields [maybe should look for better name; but this is the name I use elsewhere] is a

collection of functors C from manifolds of dimension n or less to sets. These func-
tors must satisfy various properties (see KW TQFT notes for details). For example:
there is a canonical identification C(X t Y ) = C(X) × C(Y ); there is a restriction
map C(X) → C(∂X); gluing manifolds corresponds to fibered products of fields;
given a field c ∈ C(Y ) there is a “product field” c× I ∈ C(Y × I); ... [should eventually
include full details of definition of fields.]

[note: probably will suppress from notation the distinction between fields and their (orientation-
reversal) duals]

[remark that if top dimensional fields are not already linear then we will soon linearize them(?)]
The definition of a system of fields is intended to generalize the relevant proper-

ties of the following two examples of fields.
The first example: Fix a target space B and define C(X) (where X is a manifold

of dimension n or less) to be the set of all maps from X to B.
The second example will take longer to explain. Given an n-category C with the

right sort of duality (e.g. pivotal 2-category, 1-category with duals, star 1-category,
disklike n-category), we can construct a system of fields as follows. Roughly speak-
ing, C(X) will the set of all embedded cell complexes in X with codimension i cells
labeled by i-morphisms of C. We’ll spell this out for n = 1, 2 and then describe the
general case.

If X has boundary, we require that the cell decompositions are in general posi-
tion with respect to the boundary — the boundary intersects each cell transversely,
so cells meeting the boundary are mere half-cells.

Put another way, the cell decompositions we consider are dual to standard cell
decompositions of X .

We will always assume that our n-categories have linear n-morphisms.
For n = 1, a field on a 0-manifold P is a labeling of each point of P with an object

(0-morphism) of the 1-category C. A field on a 1-manifold S consists of
• A cell decomposition of S (equivalently, a finite collection of points in the

interior of S);
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• a labeling of each 1-cell (and each half 1-cell adjacent to ∂S) by an object
(0-morphism) of C;
• a transverse orientation of each 0-cell, thought of as a choice of “domain”

and “range” for the two adjacent 1-cells; and
• a labeling of each 0-cell by a morphism (1-morphism) of C, with domain

and range determined by the transverse orientation and the labelings of the
1-cells.

If C is an algebra (i.e. if C has only one 0-morphism) we can ignore the labels of
1-cells, so a field on a 1-manifold S is a finite collection of points in the interior of
S, each transversely oriented and each labeled by an element (1-morphism) of the
algebra.

For n = 2, fields are just the sort of pictures based on 2-categories (e.g. tensor
categories) that are common in the literature. We describe these carefully here.

A field on a 0-manifold P is a labeling of each point of P with an object of the
2-category C. A field of a 1-manifold is defined as in the n = 1 case, using the 0-
and 1-morphisms of C. A field on a 2-manifold Y consists of

• A cell decomposition of Y (equivalently, a graph embedded in Y such that
each component of the complement is homeomorphic to a disk);
• a labeling of each 2-cell (and each partial 2-cell adjacent to ∂Y ) by a 0-

morphism of C;
• a transverse orientation of each 1-cell, thought of as a choice of “domain”

and “range” for the two adjacent 2-cells;
• a labeling of each 1-cell by a 1-morphism of C, with domain and range

determined by the transverse orientation of the 1-cell and the labelings of
the 2-cells;
• for each 0-cell, a homeomorphism of the boundary R of a small neighbor-

hood of the 0-cell to S1 such that the intersections of the 1-cells with R are
not mapped to ±1 ∈ S1; and
• a labeling of each 0-cell by a 2-morphism of C, with domain and range

determined by the labelings of the 1-cells and the parameterizations of the
previous bullet.

[need to say this better; don’t try to fit everything into the bulleted list]
For general n, a field on a k-manifold Xk consists of

• A cell decomposition of X ;
• an explicit general position homeomorphism from the link of each j-cell to

the boundary of the standard (k − j)-dimensional bihedron; and
• a labeling of each j-cell by a (k − j)-dimensional morphism of C, with do-

main and range determined by the labelings of the link of j-cell.

For top dimensional (n-dimensional) manifolds, we’re actually interested in the
linearized space of fields. By default, define Cl(X) = C[C(X)]; that is, Cl(X) is the
vector space of finite linear combinations of fields on X . If X has boundary, we
of course fix a boundary condition: Cl(X; a) = C[C(X; a)]. Thus the restriction (to
boundary) maps are well defined because we never take linear combinations of
fields with differing boundary conditions.

In some cases we don’t linearize the default way; instead we take the spaces
Cl(X; a) to be part of the data for the system of fields. In particular, for fields
based on linear n-category pictures we linearize as follows. Define Cl(X; a) =
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C[C(X; a)]/K, where K is the space generated by obvious relations on 0-cell la-
bels. More specifically, let L be a cell decomposition of X and let p be a 0-cell of
L. Let αc and αd be two labelings of L which are identical except that αc labels p
by c and αd labels p by d. Then the subspace K is generated by things of the form
λαc+αd−αλc+d, where we leave it to the reader to infer the meaning of αλc+d. Note
that we are still assuming that n-categories have linear spaces of n-morphisms.

[Maybe comment further: if there’s a natural basis of morphisms, then no need; will do something
similar below; in general, whenever a label lives in a linear space we do something like this; ? say
something about tensor product of all the linear label spaces? Yes:]

For top dimensional (n-dimensional) manifolds, we linearize as follows. Define
an “almost-field” to be a field without labels on the 0-cells. (Recall that 0-cells
are labeled by n-morphisms.) To each unlabeled 0-cell in an almost field there
corresponds a (linear) n-morphism space determined by the labeling of the link
of the 0-cell. (If the 0-cell were labeled, the label would live in this space.) We
associate to each almost-labeling the tensor product of these spaces (one for each
0-cell). We now define Cl(X; a) to be the direct sum over all almost labelings of the
above tensor products.

2.2. Local relations. Let Bn denote the standard n-ball. A local relation is a collec-
tion subspaces U(Bn; c) ⊂ Cl(Bn; c) (for all c ∈ C(∂Bn)) satisfying the following
(three?) properties.

[Roughly, these are (1) the local relations imply (extended) isotopy; (2) U(Bn; ·) is an ideal w.r.t.
gluing; and (3) this ideal is generated by “small” generators (contained in an open cover of Bn).
See KW TQFT notes for details. Need to transfer details to here.]

For maps into spaces,U(Bn; c) is generated by things of the form a−b ∈ Cl(Bn; c),
where a and b are maps (fields) which are homotopic rel boundary.

For n-category pictures, U(Bn; c) is equal to the kernel of the evaluation map
Cl(Bn; c) → mor(c′, c′′), where (c′, c′′) is some (any) division of c into domain and
range.

[maybe examples of local relations before general def?]
Note that the Y is an n-manifold which is merely homeomorphic to the standard

Bn, then any homeomorphism Bn → Y induces the same local subspaces for Y .
We’ll denote these by U(Y ; c) ⊂ Cl(Y ; c), c ∈ C(∂Y ). [Is this true in high (smooth)
dimensions? Self-diffeomorphisms of Bn rel boundary might not be isotopic to the identity. OK for
PL and TOP?]

Given a system of fields and local relations, we define the skein spaceA(Y n; c) to
be the space of all finite linear combinations of fields on the n-manifold Y modulo
local relations. The Hilbert space Z(Y ; c) for the TQFT based on the fields and
local relations is defined to be the dual of A(Y ; c). (See KW TQFT notes or xxxx for
details.)

The blob complex is in some sense the derived version of A(Y ; c).

2.3. The blob complex. Let X be an n-manifold. Assume a fixed system of fields.
In this section we will usually suppress boundary conditions on X from the nota-
tion (e.g. write Cl(X) instead of Cl(X; c)).

We only consider compact manifolds, so if Y ⊂ X is a closed codimension 0
submanifold of X , then X \ Y implicitly means the closure X \ Y .

We will define B0(X), B1(X) and B2(X), then give the general case.
Define B0(X) = Cl(X). (If X has nonempty boundary, instead define B0(X; c) =

Cl(X; c). We’ll omit this sort of detail in the rest of this section.) In other words,
B0(X) is just the space of all linearized fields on X .
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B1(X) is the space of all local relations that can be imposed on B0(X). More
specifically, define a 1-blob diagram to consist of

• An embedded closed ball (“blob”) B ⊂ X .
• A field r ∈ C(X \B; c) (for some c ∈ C(∂B) = C(∂(X \B))).
• A local relation field u ∈ U(B; c) (same c as previous bullet).

Define B1(X) to be the space of all finite linear combinations of 1-blob diagrams,
modulo the simple relations relating labels of 0-cells and also the label (u above) of
the blob. [maybe spell this out in more detail] (See xxxx above.) [maybe restate this in terms
of direct sums of tensor products.]

There is a map ∂ : B1(X)→ B0(X) which sends (B, r, u) to ru, the linear combi-
nation of fields on X obtained by gluing r to u. In other words ∂ : B1(X)→ B0(X)
is given by just erasing the blob from the picture (but keeping the blob label u).

Note that the skein space A(X) is naturally isomorphic to B0(X)/∂(B1(X))) =
H0(B∗(X)).
B2(X) is the space of all relations (redundancies) among the relations of B1(X).

More specifically, B2(X) is the space of all finite linear combinations of 2-blob dia-
grams (defined below), modulo the usual linear label relations. [and also modulo blob
reordering relations?]

[maybe include longer discussion to motivate the two sorts of 2-blob diagrams]
There are two types of 2-blob diagram: disjoint and nested. A disjoint 2-blob

diagram consists of
• A pair of disjoint closed balls (blobs) B0, B1 ⊂ X .
• A field r ∈ C(X \ (B0 ∪B1); c0, c1) (where ci ∈ C(∂Bi)).
• Local relation fields ui ∈ U(Bi; ci).

Define ∂(B0, B1, r, u0, u1) = (B1, ru0, u1) − (B0, ru1, u0) ∈ B1(X). In other words,
the boundary of a disjoint 2-blob diagram is the sum (with alternating signs) of the
two ways of erasing one of the blobs. It’s easy to check that ∂2 = 0.

A nested 2-blob diagram consists of
• A pair of nested balls (blobs) B0 ⊂ B1 ⊂ X .
• A field r ∈ C(X \ B0; c0) (for some c0 ∈ C(∂B0)). Let r = r1 ∪ r′, where
r1 ∈ C(B1 \B0; c0, c1) (for some c1 ∈ C(B1)) and r′ ∈ C(X \B1; c1).
• A local relation field u0 ∈ U(B0; c0).

Define ∂(B0, B1, r, u0) = (B1, r
′, r1u0)−(B0, r, u0). Note that xxxx above guarantees

that r1u0 ∈ U(B1). As in the disjoint 2-blob case, the boundary of a nested 2-blob
is the alternating sum of the two ways of erasing one of the blobs. If we erase the
inner blob, the outer blob inherits the label r1u0.

Now for the general case. A k-blob diagram consists of
• A collection of blobs Bi ⊂ X , i = 0, . . . , k − 1. For each i and j, we require

that either Bi ∩ Bj is empty or Bi ⊂ Bj or Bj ⊂ Bi. (The case Bi = Bj is
allowed. If Bi ⊂ Bj the boundaries of Bi and Bj are allowed to intersect.)
If a blob has no other blobs strictly contained in it, we call it a twig blob.
• A field r ∈ C(X \ Bt; ct), where Bt is the union of all the twig blobs and
ct ∈ C(∂Bt).
• For each twig blob Bj a local relation field uj ∈ U(Bj ; cj), where cj is the

restriction of ct to ∂Bj . If Bi = Bj then ui = uj .
We define Bk(X) to be the vector space of all finite linear combinations of k-blob

diagrams, modulo the linear label relations and blob reordering relations defined
in the remainder of this paragraph. Let x be a blob diagram with one undetermined
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n-morphism label. The unlabeled entity is either a blob or a 0-cell outside of the
twig blobs. Let a and b be two possible n-morphism labels for the unlabeled blob
or 0-cell. Let c = λa+ b. Let xa be the blob diagram with label a, and define xb and
xc similarly. Then we impose the relation

xc = λxa + xb.

[should do this in terms of direct sums of tensor products] Let x and x′ be two blob diagrams
which differ only by a permutation π of their blob labelings. Then we impose the
relation

x = sign(π)x′.
(Alert readers will have noticed that for k = 2 our definition of Bk(X) is slightly

different from the previous definition of B2(X) — we did not impose the reorder-
ing relations. The general definition takes precedence; the earlier definition was
simplified for purposes of exposition.)

The boundary map ∂ : Bk(X)→ Bk−1(X) is defined as follows. Let b = ({Bi}, r, {uj})
be a k-blob diagram. LetEj(b) denote the result of erasing the j-th blob. IfBj is not
a twig blob, this involves only decrementing the indices of blobs Bj+1, . . . , Bk−1. If
Bj is a twig blob, we have to assign new local relation labels if removing Bj creates
new twig blobs. If Bl becomes a twig after removing Bj , then set ul = rluj , where
rl is the restriction of r to Bl \Bj . Finally, define

∂(b) =
k−1∑
j=0

(−1)jEj(b).

The (−1)j factors imply that the terms of ∂2(b) all cancel. Thus we have a chain
complex.

[?? say something about the “shape” of tree? (incl = cone, disj = product)]
[TO DO: expand definition to handle DGA and A∞ versions of n-categories; relations to Chas-

Sullivan string stuff]

3. BASIC PROPERTIES OF THE BLOB COMPLEX

Proposition 3.1. There is a natural isomorphism B∗(X t Y ) ∼= B∗(X)⊗ B∗(Y ).

Proof. Given blob diagrams b1 onX and b2 on Y , we can combine them (putting the
b1 blobs before the b2 blobs in the ordering) to get a blob diagram (b1, b2) on X t Y .
Because of the blob reordering relations, all blob diagrams on X tY arise this way.
In the other direction, any blob diagram on X t Y is equal (up to sign) to one
that puts X blobs before Y blobs in the ordering, and so determines a pair of blob
diagrams on X and Y . These two maps are compatible with our sign conventions
[say more about this?] and with the linear label relations. The two maps are inverses
of each other. [should probably say something about sign conventions for the differential in a
tensor product of chain complexes; ask Scott] �

For the next proposition we will temporarily restore n-manifold boundary con-
ditions to the notation.

Suppose that for all c ∈ C(∂Bn) we have a splitting s : H0(B∗(Bn, c))→ B0(Bn; c)
of the quotient map p : B0(Bn; c)→ H0(B∗(Bn, c)). [always the case if we’re working over
C]. Then

Proposition 3.2. For all c ∈ C(∂Bn) the natural map p : B∗(Bn, c) → H0(B∗(Bn, c))
is a chain homotopy equivalence with inverse s : H0(B∗(Bn, c)) → B∗(Bn; c). Here we
think of H0(B∗(Bn, c)) as a 1-step complex concentrated in degree 0.
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Proof. By assumption p ◦ s = id, so all that remains is to find a degree 1 map
h : B∗(Bn; c) → B∗(Bn; c) such that ∂h + h∂ = id−s ◦ p. For i ≥ 1, define
hi : Bi(Bn; c) → Bi+1(Bn; c) by adding an (i+1)-st blob equal to all of Bn. In
other words, add a new outermost blob which encloses all of the others. Define
h0 : B0(Bn; c) → B1(Bn; c) by setting h0(x) equal to the 1-blob with blob Bn and
label x− s(p(x)) ∈ U(Bn; c). [x is a 0-blob diagram, i.e. x ∈ C(Bn; c)] �

(Note that for the above proof to work, we need the linear label relations for blob
labels. Also we need to blob reordering relations (?).)

(Note also that if there is no splitting s, we can let h0 = 0 and get a homotopy
equivalence to the 2-step complex U(Bn; c)→ C(Bn; c).)

(For fields based on n-cats, H0(B∗(Bn; c)) ∼= mor(c′, c′′).)

As we noted above,

Proposition 3.3. There is a natural isomorphism H0(B∗(X)) ∼= A(X). �

Proposition 3.4. For fixed fields (n-cat), B∗ is a functor from the category of n-manifolds
and diffeomorphisms to the category of chain complexes and (chain map) isomorphisms. �

[need to same something about boundaries and boundary conditions above. maybe fix the bound-
ary and consider the category of n-manifolds with the given boundary.]

In particular,

Proposition 3.5. There is an action of Diff(X) on B∗(X). �

The above will be greatly strengthened in Section 5.

For the next proposition we will temporarily restore n-manifold boundary con-
ditions to the notation.

Let X be an n-manifold, ∂X = Y ∪ (−Y ) ∪ Z. Gluing the two copies of Y to-
gether yields an n-manifold Xgl with boundary Zgl. Given compatible fields (pic-
tures, boundary conditions) a, b and c on Y , −Y and Z, we have the blob complex
B∗(X; a, b, c). If b = −a (the orientation reversal of a), then we can glue up blob
diagrams on X to get blob diagrams on Xgl:

Proposition 3.6. There is a natural chain map

gl :
⊕
a

B∗(X; a,−a, c)→ B∗(Xgl; cgl).

The sum is over all fields a on Y compatible at their (n−2-dimensional) boundaries with c.
‘Natural’ means natural with respect to the actions of diffeomorphisms. �

The above map is very far from being an isomorphism, even on homology. This
will be fixed in Section 8 below.

An instance of gluing we will encounter frequently below is where X = X1tX2

and Xgl = X1 ∪Y X2. (Typically one of X1 or X2 is a disjoint union of balls.) For
xi ∈ B∗(Xi), we introduce the notation

x1 • x2
def= gl(x1 ⊗ x2).

Note that we have resumed our habit of omitting boundary labels from the nota-
tion.

[what else?]
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4. n = 1 AND HOCHSCHILD HOMOLOGY

In this section we analyze the blob complex in dimension n = 1 and find that for
S1 the homology of the blob complex is the Hochschild homology of the category
(algebroid) that we started with. [or maybe say here that the complexes are quasi-isomorphic?
in general, should perhaps put more emphasis on the complexes and less on the homology.]

Notation: HBi(X) = Hi(B∗(X)).
Let us first note that there is no loss of generality in assuming that our system of

fields comes from a category. (Or maybe (???) there is a loss of generality. Given
any system of fields, A(I; a, b) = C(I; a, b)/U(I; a, b) can be thought of as the mor-
phisms of a 1-category C. More specifically, the objects of C are C(pt), the mor-
phisms from a to b are A(I; a, b), and composition is given by gluing. If we in-
stead take our fields to be C-pictures, the C(pt) does not change and neither does
A(I; a, b) = HB0(I; a, b). But what about HBi(I; a, b) for i > 0? Might these higher
blob homology groups be different? Seems unlikely, but I don’t feel like trying to
prove it at the moment. In any case, we’ll concentrate on the case of fields based
on 1-category pictures for the rest of this section.)

(Another question: B∗(I) is an A∞-category. How general of an A∞-category is
it? Given an arbitrary A∞-category can one find fields and local relations so that
B∗(I) is in some sense equivalent to the originalA∞-category? Probably not, unless
we generalize to the case where n-morphisms are complexes.)

Continuing...
Let C be a *-1-category. Then specializing the definitions from above to the case

n = 1 we have:

• C(pt) = ob(C) .
• Let R be a 1-manifold and c ∈ C(∂R). Then an element of C(R; c) is a collec-

tion of (transversely oriented) points in the interior of R, each labeled by a
morphism of C. The intervals between the points are labeled by objects of
C, consistent with the boundary condition c and the domains and ranges of
the point labels.
• There is an evaluation map e : C(I; a, b)→ mor(a, b) given by composing the

morphism labels of the points. Note that we also need the * of *-1-category
here in order to make all the morphisms point the same way.
• For x ∈ mor(a, b) let χ(x) ∈ C(I; a, b) be the field with a single point (at

some standard location) labeled by x. Then the kernel of the evaluation
map U(I; a, b) is generated by things of the form y − χ(e(y)). Thus we can,
if we choose, restrict the blob twig labels to things of this form.

We want to show thatHB∗(S1) is naturally isomorphic to the Hochschild homol-
ogy of C. [Or better that the complexes are homotopic or quasi-isomorphic.] In order to prove
this we will need to extend the blob complex to allow points to also be labeled by
elements of C-C-bimodules.

Fix points p1, . . . , pk ∈ S1 and C-C-bimodules M1, . . .Mk. We define a blob-like
complex F∗(S1, (pi), (Mi)). The fields have elements ofMi labeling pi and elements
of C labeling other points. The blob twig labels lie in kernels of evaluation maps.
(The range of these evaluation maps is a tensor product (over C) of Mi’s.) Let
F∗(M) = F∗(S1, (∗), (M)), where ∗ ∈ S1 is some standard base point. In other
words, fields for F∗(M) have an element of M at the fixed point ∗ and elements of
C at variable other points.

We claim that the homology of F∗(M) is isomorphic to the Hochschild homology
ofM . [Or maybe we should claim thatM → F∗(M) is the/a derived coend. Or maybe that F∗(M)
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is quasi-isomorphic (or perhaps homotopic) to the Hochschild complex of M .] This follows from
the following lemmas:

• F∗(M1 ⊕M2) ∼= F∗(M1)⊕ F∗(M2).
• An exact sequence 0→M1 →M2 →M3 → 0 gives rise to an exact sequence

0→ F∗(M1)→ F∗(M2)→ F∗(M3)→ 0. (See below for proof.)
• F∗(C ⊗C) (the free C-C-bimodule with one generator) is quasi-isomorphic

to the 0-step complex C. (See below for proof.)
• F∗(C) (hereC is wearing itsC-C-bimodule hat) is quasi-isomorphic toB∗(S1).

(See below for proof.)
First we show that F∗(C ⊗ C) is quasi-isomorphic to the 0-step complex C.
Let F ′∗ ⊂ F∗(C ⊗ C) be the subcomplex where the label of the point ∗ is 1 ⊗ 1 ∈

C⊗C. We will show that the inclusion i : F ′∗ → F∗(C⊗C) is a quasi-isomorphism.
Fix a small ε > 0. LetBε be the ball of radius ε around ∗ ∈ S1. Let F ε∗ ⊂ F∗(C⊗C)

be the subcomplex generated by blob diagrams b such thatBε is either disjoint from
or contained in each blob of b, and the two boundary points of Bε are not labeled
points of b. For a field (picture) y on Bε, let sε(y) be the equivalent picture with ∗
labeled by 1 ⊗ 1 and the only other labeled points at distance ±ε/2 from ∗. (See
Figure xxxx.) Note that y − sε(y) ∈ U(Bε). [maybe it’s simpler to assume that there are no
labeled points, other than ∗, in Bε.]

Define a degree 1 chain map jε : F ε∗ → F ε∗ as follows. Let x ∈ F ε∗ be a blob
diagram. If ∗ is not contained in any twig blob, jε(x) is obtained by adding Bε to x
as a new twig blob, with label y − sε(y), where y is the restriction of x to Bε. If ∗ is
contained in a twig blob B with label u =

∑
zi, jε(x) is obtained as follows. Let yi

be the restriction of zi to Bε. Let xi be equal to x outside of B, equal to zi on B \Bε,
and have an additional blob Bε with label yi − sε(yi). Define jε(x) =

∑
xi. [need to

check signs coming from blob complex differential]
Note that if x ∈ F ′∗ ∩ F ε∗ then jε(x) ∈ F ′∗ also.
The key property of jε is

∂jε + jε∂ = id−σε,
where σε : F ε∗ → F ε∗ is given by replacing the restriction y of each field mentioned
in x ∈ F ε∗ with sε(y). Note that σε(x) ∈ F ′∗.

If jε were defined on all of F∗(C ⊗ C), it would show that σε is a homotopy
inverse to the inclusion F ′∗ → F∗(C ⊗ C). One strategy would be to try to stitch
together various jε for progressively smaller ε and show that F ′∗ is homotopy equiv-
alent to F∗(C ⊗ C). Instead, we’ll be less ambitious and just show that F ′∗ is quasi-
isomorphic to F∗(C ⊗ C).

If x is a cycle in F∗(C ⊗ C), then for sufficiently small ε we have x ∈ F ε∗ . (This
is true for any chain in F∗(C ⊗ C), since chains are sums of finitely many blob
diagrams.) Then x is homologous to sε(x), which is in F ′∗, so the inclusion map
F ′∗ ⊂ F∗(C ⊗C) is surjective on homology. If y ∈ F∗(C ⊗C) and ∂y = x ∈ F ′∗, then
y ∈ F ε∗ for some ε and

∂y = ∂(σε(y) + jε(x)).
Since σε(y) + jε(x) ∈ F ′, it follows that the inclusion map is injective on homology.
This completes the proof that F ′∗ is quasi-isomorphic to F∗(C ⊗ C).

Let F ′′∗ ⊂ F ′∗ be the subcomplex of F ′∗ where ∗ is not contained in any blob. We
will show that the inclusion i : F ′′∗ → F ′∗ is a homotopy equivalence.

First, a lemma: Let G′′∗ and G′∗ be defined the same as F ′′∗ and F ′∗, except with S1

replaced some (any) neighborhood of ∗ ∈ S1. ThenG′′∗ andG′∗ are both contractible
and the inclusionG′′∗ ⊂ G′∗ is a homotopy equivalence. ForG′∗ the proof is the same
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as in (3.2), except that the splitting G′0 → H0(G′∗) concentrates the point labels at
two points to the right and left of ∗. For G′′∗ we note that any cycle is supported
[need to establish terminology for this; maybe in “basic properties” section above] away from ∗.
Thus any cycle lies in the image of the normal blob complex of a disjoint union of
two intervals, which is contractible by (3.2) and (3.1). Actually, we need the further
(easy) result that the inclusion G′′∗ → G′∗ induces an isomorphism on H0.

Next we construct a degree 1 map (homotopy) h : F ′∗ → F ′∗ such that for all
x ∈ F ′∗ we have

x− ∂h(x)− h(∂x) ∈ F ′′∗ .

Since F ′0 = F ′′0 , we can take h0 = 0. Let x ∈ F ′1, with single blob B ⊂ S1. If
∗ /∈ B, then x ∈ F ′′1 and we define h1(x) = 0. If ∗ ∈ B, then we work in the image
of G′∗ and G′′∗ (with respect to B). Choose x′′ ∈ G′′1 such that ∂x′′ = ∂x. Since
G′∗ is contractible, there exists y ∈ G′2 such that ∂y = x − x′′. Define h1(x) = y.
The general case is similar, except that we have to take lower order homotopies
into account. Let x ∈ F ′k. If ∗ is not contained in any of the blobs of x, then define
hk(x) = 0. Otherwise, letB be the outermost blob of x containing ∗. By xxxx above,
x = x′ • p, where x′ is supported on B and p is supported away from B. So x′ ∈ G′l
for some l ≤ k. Choose x′′ ∈ G′′l such that ∂x′′ = ∂(x′ − hl−1∂x

′). Choose y ∈ G′l+1

such that ∂y = x′ − x′′ − hl−1∂x
′. Define hk(x) = y • p. This completes the proof

that i : F ′′∗ → F ′∗ is a homotopy equivalence. [need to say above more clearly and settle on
notation/terminology]

Finally, we show that F ′′∗ is contractible. [need to also show that H0 is the right thing;
easy, but I won’t do it now] Let x be a cycle in F ′′∗ . The union of the supports of the
diagrams in x does not contain ∗, so there exists a ball B ⊂ S1 containing the union
of the supports and not containing ∗. Adding B as a blob to x gives a contraction.
[need to say something else in degree zero]

This completes the proof that F∗(C ⊗ C) is homotopic to the 0-step complex C.

Next we show that F∗(C) is quasi-isomorphic to B∗(S1). F∗(C) differs from
B∗(S1) only in that the base point * is always a labeled point in F∗(C), while in
B∗(S1) it may or may not be. In other words, there is an inclusion map i : F∗(C)→
B∗(S1).

We define a quasi-inverse [right term?] s : B∗(S1) → F∗(C) to the inclusion as
follows. If y is a field defined on a neighborhood of *, define s(y) = y if * is a labeled
point in y. Otherwise, define s(y) to be the result of adding a label 1 (identity
morphism) at *. Let x ∈ B∗(S1). Let s(x) be the result of replacing each field y
(containing *) mentioned in x with y. It is easy to check that s is a chain map and
s ◦ i = id.

LetGε∗ ⊂ B∗(S1) be the subcomplex where there are no labeled points in a neigh-
borhood Bε of *, except perhaps *. Note that for any chain x ∈ B∗(S1), x ∈ Gε∗ for
sufficiently small ε. [rest of argument goes similarly to above]

[still need to prove exactness claim]
[What else needs to be said to establish quasi-isomorphism to Hochschild complex? Do we need a

map from hoch to blob? Does the above exactness and contractibility guarantee such a map without
writing it down explicitly? Probably it’s worth writing down an explicit map even if we don’t need
to.]

We can also describe explicitly a map from the standard Hochschild complex to
the blob complex on the circle. [What properties does this map have?]
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FIGURE 1. The Hochschild chain a ⊗ b ⊗ c is sent to the sum of six
blob 2-chains, corresponding to a barycentric subdivision of a 2-
simplex.

As an example, Figure 1 shows the image of the Hochschild chain a⊗ b⊗ c. Only
the 0-cells are shown explicitly. The edges marked x, y and z carry the 1-chains

x = ux = −

y = uy = −

z = uz = −

and the 2-chain labelled A is

A = + .

Note that we then have
∂A = x+ y + z.

In general, the Hochschild chain
⊗n

i=1 ai is sent to the sum of n! blob (n − 1)-
chains, indexed by permutations,

φ

(
n⊗
i=1

ai

)
=
∑
π

φπ(a1, . . . , an)

with ... (hmmm, problems making this precise; you need to decide where to put
the labels, but then it’s hard to make an honest chain map!)
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5. ACTION OF C∗(Diff(X))

Let CD∗(X) denote C∗(Diff(X)), the singular chain complex of the space of dif-
feomorphisms of the n-manifold X (fixed on ∂X). For convenience, we will permit
the singular cells generating CD∗(X) to be more general than simplices — they can
be based on any linear polyhedron. [be more restrictive here? does more need to be said?]

Proposition 5.1. For each n-manifold X there is a chain map

eX : CD∗(X)⊗ B∗(X)→ B∗(X).

On CD0(X)⊗B∗(X) it agrees with the obvious action of Diff(X) on B∗(X) (Proposition
(3.5)). For any splitting X = X1 ∪X2, the following diagram commutes

CD∗(X)⊗ B∗(X)
eX // B∗(X)

CD∗(X1)⊗ CD∗(X2)⊗ B∗(X1)⊗ B∗(X2)

eX1
⊗eX2

55

gl⊗ gl

OO

B∗(X1)⊗ B∗(X2)

gl

OO

Any other map satisfying the above two properties is homotopic to eX .

The proof will occupy the remainder of this section.

Let f : P × X → X be a family of diffeomorphisms and S ⊂ X . We say that
f is supported on S if f(p, x) = f(q, x) for all x /∈ S and p, q ∈ P . Note that if f is
supported on S then it is also supported on any R ⊃ S.

Let U = {Uα} be an open cover of X . A k-parameter family of diffeomorphisms
f : P ×X → X is adapted to U if there is a factorization

P = P1 × · · · × Pm
(for some m ≤ k) and families of diffeomorphisms

fi : Pi ×X → X

such that
• each fi(p, ·) : X → X is supported on some connected Vi ⊂ X ;
• the Vi’s are mutually disjoint;
• each Vi is the union of at most ki of the Uα’s, where ki = dim(Pi); and
• f(p, ·) = f1(p1, ·) ◦ · · · ◦ fm(pm, ·) ◦ g for all p = (p1, . . . , pm), for some fixed
g ∈ Diff(X).

A chain x ∈ Ck(Diff(X)) is (by definition) adapted to U if it is the sum of singular
cells, each of which is adapted to U .

Lemma 5.2. Let x ∈ CDk(X) be a singular chain such that ∂x is adapted to U . Then x
is homotopic (rel boundary) to some x′ ∈ CDk(X) which is adapted to U .

The proof will be given in Section 6.

Let B1, . . . , Bm be a collection of disjoint balls in X (e.g. the support of a blob
diagram). We say that f : P × X → X is compatible with {Bj} if f has support a
disjoint collection of balls Di ⊂ X and for all i and j either Bj ⊂ Di or Bj ∩Di = ∅.
A chain x ∈ CDk(X) is compatible with {Bj} if it is a sum of singular cells, each of
which is compatible. (Note that we could strengthen the definition of compatibility
to incorporate a factorization condition, similar to the definition of “adapted to”
above. The weaker definition given here will suffice for our needs below.)
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Corollary 5.3. Let x ∈ CDk(X) be a singular chain such that ∂x is compatible with
{Bj}. Then x is homotopic (rel boundary) to some x′ ∈ CDk(X) which is compatible with
{Bj}.

Proof. This will follow from Lemma 5.2 for appropriate choice of cover U = {Uα}.
Let Uα1 , . . . , Uαk be any k open sets of U , and let V1, . . . , Vm be the connected com-
ponents of Uα1 ∪ · · · ∪ Uαk . Choose U fine enough so that there exist disjoint balls
B′j ⊃ Bj such that for all i and j either Vi ⊂ B′j or Vi ∩B′j = ∅.

Apply Lemma 5.2 first to each singular cell fi of ∂x, with the (compatible) sup-
port of fi in place of X . This insures that the resulting homotopy hi is compatible.
Now apply Lemma 5.2 to x +

∑
hi. [actually, need to start with the 0-skeleton of ∂x, then

1-skeleton, etc.; fix this] �

((argument continues roughly as follows: up to homotopy, there is only one way
to define eX on compatible x ⊗ y ∈ CD∗(X) ⊗ B∗(X). This is because x is the
gluing of x′ and x′′, where x′ has degree zero and is defined on the complement of
the Di’s, and x′′ is defined on the Di’s. We have no choice on x′, since we already
know the map on 0-parameter families of diffeomorphisms. We have no choice, up
to homotopy, on x′′, since the target chain complex is contractible.))

6. FAMILIES OF DIFFEOMORPHISMS

Lo, the proof of Lemma (5.2):
[should this be an appendix instead?]
[for pedagogical reasons, should do k = 1, 2 cases first; probably do this in later draft]
[not sure what the best way to deal with boundary is; for now just give main argument, worry

about boundary later]
Recall that we are given an open cover U = {Uα} and an x ∈ CDk(X) such

that ∂x is adapted to U . We must find a homotopy of x (rel boundary) to some
x′ ∈ CDk(X) which is adapted to U .

Let {rα : X → [0, 1]} be a partition of unity for U .
As a first approximation to the argument we will eventually make, let’s replace

x with a single singular cell
f : P ×X → X.

Also, we’ll ignore for now issues around ∂P .
Our homotopy will have the form

F : I × P ×X → X

(t, p, x) 7→ f(u(t, p, x), x)

for some function
u : I × P ×X → P.

First we describe u, then we argue that it does what we want it to do.
For each cover index α choose a cell decomposition Kα of P . The various Kα

should be in general position with respect to each other. We will see below that
the Kα’s need to be sufficiently fine in order to insure that F above is a homotopy
through diffeomorphisms ofX and not merely a homotopy through mapsX → X .

Let L be the union of all the Kα’s. L is itself a cell decomposition of P . [next
two sentences not needed?] To each cell a of L we associate the tuple (cα), where cα is
the codimension of the cell of Kα which contains c. Since the Kα’s are in general
position, we have

∑
cα ≤ k.
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Let J denote the handle decomposition of P corresponding to L. Each i-handle
C of J has an i-dimensional tangential coordinate and, more importantly, a k−i-
dimensional normal coordinate.

For each (top-dimensional) k-cell c of each Kα, choose a point pc ∈ c ⊂ P . Let
D be a k-handle of J , and let D also denote the corresponding k-cell of L. To
D we associate the tuple (cα) of k-cells of the Kα’s which contain d, and also the
corresponding tuple (pcα) of points in P .

For p ∈ D we define

u(t, p, x) = (1− t)p+ t
∑
α

rα(x)pcα .

(Recall that P is a single linear cell, so the weighted average of points of P makes
sense.)

So far we have defined u(t, p, x) when p lies in a k-handle of J . For handles of J
of index less than k, we will define u to interpolate between the values on k-handles
defined above.

If p lies in a k−1-handle E, let η : E → [0, 1] be the normal coordinate of E. In
particular, η is equal to 0 or 1 only at the intersection of E with a k-handle. Let β be
the index of the Kβ containing the k−1-cell corresponding to E. Let q0, q1 ∈ P be
the points associated to the two k-cells ofKβ adjacent to the k−1-cell corresponding
to E. For p ∈ E, define

u(t, p, x) = (1− t)p+ t

∑
α 6=β

rα(x)pcα + rβ(x)(η(p)q1 + (1− η(p))q0)

 .

In general, for E a k−j-handle, there is a normal coordinate η : E → R, where
R is some j-dimensional polyhedron. The vertices of R are associated to k-cells of
the Kα, and thence to points of P . If we triangulate R (without introducing new
vertices), we can linearly extend a map from the vertices of R into P to a map of
all of R into P . Let N be the set of all β for which Kβ has a k-cell whose boundary
meets the k−j-cell corresponding toE. For each β ∈ N , let {qβi} be the set of points
in P associated to the aforementioned k-cells. Now define, for p ∈ E,

u(t, p, x) = (1− t)p+ t

∑
α/∈N

rα(x)pcα +
∑
β∈N

rβ(x)

(∑
i

ηβi(p) · qβi

) .

Here ηβi(p) is the weight given to qβi by the linear extension mentioned above.
This completes the definition of u : I × P ×X → P .

Next we verify that u has the desired properties.
Since u(0, p, x) = p for all p ∈ P and x ∈ X , F (0, p, x) = f(p, x) for all p and x.

Therefore F is a homotopy from f to something.
Next we show that if the Kα’s are sufficiently fine cell decompositions, then

F is a homotopy through diffeomorphisms. We must show that the derivative
∂F
∂x (t, p, x) is non-singular for all (t, p, x). We have

∂F

∂x
=
∂f

∂x
+
∂f

∂p

∂u

∂x
.

Since f is a family of diffeomorphisms, ∂f
∂x is non-singular and [bounded away from

zero, or something like that]. (Recall thatX and P are compact.) Also, ∂f∂p is bounded. So
if we can insure that ∂u∂x is sufficiently small, we are done. It follows from Equation
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xxxx above that ∂u∂x depends on ∂rα
∂x (which is bounded) and the differences amongst

the various pcα ’s and qβi’s. These differences are small if the cell decompositions
Kα are sufficiently fine. This completes the proof that F is a homotopy through
diffeomorphisms.

Next we show that for each handle D ⊂ P , F (1, ·, ·) : D ×X → X is a singular
cell adapted to U . This will complete the proof of the lemma. [except for boundary
issues and the ‘P is a cell’ assumption]

Let j be the codimension of D. (Or rather, the codimension of its corresponding
cell. From now on we will not make a distinction between handle and correspond-
ing cell.) Then j = j1 + · · ·+ jm, 0 ≤ m ≤ k, where the ji’s are the codimensions of
theKα cells of codimension greater than 0 which intersect to formD. We will show
that if the relevant Uα’s are disjoint, then F (1, ·, ·) : D×X → X is a product of sin-
gular cells of dimensions j1, . . . , jm. If some of the relevant Uα’s intersect, then we
will get a product of singular cells whose dimensions correspond to a partition of
the ji’s. We will consider some simple special cases first, then do the general case.

First consider the case j = 0 (and m = 0). A quick look at Equation xxxx above
shows that u(1, p, x), and hence F (1, p, x), is independent of p ∈ P . So the corre-
sponding map D → Diff(X) is constant.

Next consider the case j = 1 (and m = 1, j1 = 1). Now Equation yyyy applies.
We can writeD = D′×I , where the normal coordinate η is constant onD′. It follows
that the singular cell D → Diff(X) can be written as a product of a constant map
D′ → Diff(X) and a singular 1-cell I → Diff(X). The singular 1-cell is supported
on Uβ , since rβ = 0 outside of this set.

Next case: j = 2, m = 1, j1 = 2. This is similar to the previous case, except
that the normal bundle is 2-dimensional instead of 1-dimensional. We have that
D → Diff(X) is a product of a constant singular k−2-cell and a 2-cell with support
Uβ .

Next case: j = 2, m = 2, j1 = j2 = 1. In this case the codimension 2 cell
D is the intersection of two codimension 1 cells, from Kβ and Kγ . We can write
D = D′ × I × I , where the normal coordinates are constant on D′, and the two I
factors correspond to β and γ. If Uβ and Uγ are disjoint, then we can factor D into a
constant k−2-cell and two 1-cells, supported on Uβ and Uγ respectively. If Uβ and
Uγ intersect, then we can factor D into a constant k−2-cell and a 2-cell supported
on Uβ ∪ Uγ . [need to check that this is true]

[finally, general case...]
[this completes proof]

7. A∞ ACTION ON THE BOUNDARY

Let Y be an n−1-manifold. The collection of complexes {B∗(Y × I; a, b)}, where
a, b ∈ C(Y ) are boundary conditions on ∂(Y × I) = Y × {0} ∪ Y × {1}, has the
structure of an A∞ category.

Composition of morphisms (multiplication) depends of a choice of homeomor-
phism I ∪ I ∼= I . Given this choice, gluing gives a map

B∗(Y × I; a, b)⊗ B∗(Y × I; b, c)→ B∗(Y × (I ∪ I); a, c) ∼= B∗(Y × I; a, c)

Using (5.1) and the inclusion Diff(I) ⊂ Diff(Y × I) gives the various higher associ-
ators of the A∞ structure, more or less canonically.

[is this obvious? does more need to be said?]
Let A(Y ) denote the A∞ category B∗(Y × I; ·, ·).
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Similarly, if Y ⊂ ∂X , a choice of collaring homeomorphism (Y × I) ∪Y X ∼= X
gives the collection of complexes B∗(X; r, a) (variable a ∈ C(Y ); fixed r ∈ C(∂X \
Y )) the structure of a representation of the A∞ category {B∗(Y × I; ·, ·)}. Again the
higher associators come from the action of Diff(I) on a collar neighborhood of Y in
X .

In the next section we use the above A∞ actions to state and prove a gluing
theorem for the blob complexes of n-manifolds.

8. GLUING

Let Y be an n−1-manifold and let X be an n-manifold with a copy of Y t −Y
contained in its boundary. Gluing the two copies of Y together we obtain a new n-
manifoldXgl. We wish to describe the blob complex ofXgl in terms of the blob com-
plex of X . More precisely, we want to describe B∗(Xgl; cgl), where cgl ∈ C(∂Xgl),
in terms of the collection {B∗(X; c, ·, ·)}, thought of as a representation of the A∞
category A(Y t −Y ) ∼= A(Y )×A(Y )op.

Theorem 8.1. B∗(Xgl; cgl) is quasi-isomorphic to the the self tensor product of {B∗(X; c, ·, ·)}
over A(Y ).

The proof will occupy the remainder of this section.
[...]

[need to define/recall def of (self) tensor product over an A∞ category]

9. EXTENSION TO ...

[Need to let the input n-category C be a graded thing (e.g. DGA or A∞ n-category).]
[maybe this should be done earlier in the exposition? if we can plausibly claim that the various

proofs work almost the same with the extended def, then maybe it’s better to extend late (here)]

10. WHAT ELSE?...

• Derive Hochschild standard results from blob point of view?
• n = 2 examples
• Kh
• dimension n+ 1 (generalized Deligne conjecture?)
• should be clear about PL vs Diff; probably PL is better (or maybe not)
• say what we mean by n-category, A∞ or E∞ n-category
• something about higher derived coend things (derived 2-coend, e.g.)

E-mail address: scott@tqft.net
URL: http://tqft.net/

E-mail address: kevin@canyon23.net
URL: http://canyon23.net/
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