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Abstract

Given an n-manifold M and an n-category C, we define a chain complex (the “blob complex”)
B∗(M ; C). The blob complex can be thought of as a derived category analogue of the Hilbert space
of a TQFT, and also as a generalization of Hochschild homology to n-categories and n-manifolds.
It enjoys a number of nice formal properties, including a higher dimensional generalization of
Deligne’s conjecture about the action of the little disks operad on Hochschild cochains. Along
the way, we give a definition of a weak n-category with strong duality which is particularly well
suited for work with TQFTs.
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1 Introduction

We construct a chain complex B∗(M ; C) — the “blob complex” — associated to an n-manifold
M and a linear n-category C with strong duality. This blob complex provides a simultaneous
generalization of several well known constructions:

• The 0-th homology H0(B∗(M ; C)) is isomorphic to the usual topological quantum field theory
invariant of M associated to C. (See Proposition 3.1.1 later in the introduction and §2.4.)

• When n = 1 and C is just a 1-category (e.g. an associative algebra), the blob complex B∗(S1; C)
is quasi-isomorphic to the Hochschild complex Hoch∗(C). (See Theorem 4.1.1 and §4.)

• When C is π∞≤n(T ), the A∞ version of the fundamental n-groupoid of the space T (Example
6.2.7), B∗(M ; C) is homotopy equivalent to C∗(Maps(M → T )), the singular chains on the
space of maps from M to T . (See Theorem 7.3.1.)

The blob complex definition is motivated by the desire for a derived analogue of the usual TQFT
Hilbert space (replacing the quotient of fields by local relations with some sort of resolution), and for
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a generalization of Hochschild homology to higher n-categories. One can think of it as the push-out
of these two familiar constructions. More detailed motivations are described in §1.2.

The blob complex has good formal properties, summarized in §1.3. These include an action of
C∗(Homeo(M)), extending the usual Homeo(M) action on the TQFT space H0 (Theorem 5.2.1)
and a gluing formula allowing calculations by cutting manifolds into smaller parts (Theorem 7.2.1).

We expect applications of the blob complex to contact topology and Khovanov homology but do
not address these in this paper.

Throughout, we have resisted the temptation to work in the greatest possible generality. (Don’t
worry, it wasn’t that hard.) In most of the places where we say “set” or “vector space”, any
symmetric monoidal category with sufficient limits and colimits would do. We could also replace
many of our chain complexes with topological spaces (or indeed, work at the generality of model
categories).

1.1 Structure of the paper

The subsections of the introduction explain our motivations in defining the blob complex (see §1.2),
summarize the formal properties of the blob complex (see §1.3), describe known specializations (see
§1.4), and outline the major results of the paper (see §1.5 and §1.6).

The first part of the paper (sections §2–§5) gives the definition of the blob complex, and
establishes some of its properties. There are many alternative definitions of n-categories, and part
of the challenge of defining the blob complex is simply explaining what we mean by an “n-category
with strong duality” as one of the inputs. At first we entirely avoid this problem by introducing
the notion of a “system of fields”, and define the blob complex associated to an n-manifold and an
n-dimensional system of fields. We sketch the construction of a system of fields from a *-1-category
and from a pivotal 2-category.

Nevertheless, when we attempt to establish all of the observed properties of the blob complex, we
find this situation unsatisfactory. Thus, in the second part of the paper (§§6-7) we give yet another
definition of an n-category, or rather a definition of an n-category with strong duality. (Removing
the duality conditions from our definition would make it more complicated rather than less.) We
call these “disk-like n-categories”, to differentiate them from previous versions. Moreover, we find
that we need analogous A∞ n-categories, and we define these as well following very similar axioms.
(See §1.7 below for a discussion of n-category terminology.)

The basic idea is that each potential definition of an n-category makes a choice about the “shape”
of morphisms. We try to be as lax as possible: a disk-like n-category associates a vector space to
every B homeomorphic to the n-ball. These vector spaces glue together associatively, and we require
that there is an action of the homeomorphism groupoid. For an A∞ n-category, we associate a
chain complex instead of a vector space to each such B and ask that the action of homeomorphisms
extends to a suitably defined action of the complex of singular chains of homeomorphisms. The
axioms for an A∞ n-category are designed to capture two main examples: the blob complexes of
n-balls labelled by a disk-like n-category, and the complex C∗(Maps(− → T )) of maps to a fixed
target space T .

In §6.7 we explain how n-categories can be viewed as objects in an n+1-category of sphere
modules. When n = 1 this just the familiar 2-category of 1-categories, bimodules and intertwinors.

In §6.3 we explain how to construct a system of fields from a disk-like n-category (using a colimit
along certain decompositions of a manifold into balls). With this in hand, we write B∗(M ; C) to
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indicate the blob complex of a manifold M with the system of fields constructed from the n-category
C. In §7 we give an alternative definition of the blob complex for an A∞ n-category on an n-manifold
(analogously, using a homotopy colimit). Using these definitions, we show how to use the blob
complex to “resolve” any ordinary n-category as an A∞ n-category, and relate the first and second
definitions of the blob complex. We use the blob complex for A∞ n-categories to establish important
properties of the blob complex (in both variants), in particular the “gluing formula” of Theorem
7.2.1 below.

The relationship between all these ideas is sketched in Figure 1.

C
a ‘traditional’

weak n-category

C
a topological
n-category

C−→(M)

the (dual) TQFT
Hilbert space

(F , U)
fields and

local relations

B∗(M ;F)
the blob complex

C∗
an A∞

n-category

C∗−→(M)

colim
D(M)

C

§§2.4 & 6.3

blob complex
for M

hocolim
D(M)

C∗

§6.3

F(M)/U

Example 2.1.2

§6.3

restrict to
standard balls restrict

to balls
H0

c.f. Proposition 3.1.1

blob complex
for balls

∼= by
Corollary 7.1.3

Figure 1: The main gadgets and constructions of the paper.

Later sections address other topics. Section §8 gives a higher dimensional generalization of
the Deligne conjecture (that the little discs operad acts on Hochschild cochains) in terms of the
blob complex. The appendices prove technical results about C∗(Homeo(M)) and make connections
between our definitions of n-categories and familiar definitions for n = 1 and n = 2, as well as
relating the n = 1 case of our A∞ n-categories with usual A∞ algebras.

1.2 Motivations

We will briefly sketch our original motivation for defining the blob complex.
As a starting point, consider TQFTs constructed via fields and local relations. (See §2 or [Wal].)

This gives a satisfactory treatment for semisimple TQFTs (i.e. TQFTs for which the cylinder
1-category associated to an n−1-manifold Y is semisimple for all Y ).
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For non-semi-simple TQFTs, this approach is less satisfactory. Our main motivating example
(though we will not develop it in this paper) is the (decapitated) 4+1-dimensional TQFT associated
to Khovanov homology. It associates a bigraded vector space AKh(W 4, L) to a 4-manifold W
together with a link L ⊂ ∂W . The original Khovanov homology of a link in S3 is recovered as
AKh(B4, L).

How would we go about computing AKh(W 4, L)? For the Khovanov homology of a link in S3 the
main tool is the exact triangle (long exact sequence) relating resolutions of a crossing. Unfortunately,
the exactness breaks if we glue B4 to itself and attempt to compute AKh(S1×B3, L). According to
the gluing theorem for TQFTs, gluing along B3 ⊂ ∂B4 corresponds to taking a coend (self tensor
product) over the cylinder category associated to B3 (with appropriate boundary conditions). The
coend is not an exact functor, so the exactness of the triangle breaks.

The obvious solution to this problem is to replace the coend with its derived counterpart,
Hochschild homology. This presumably works fine for S1 ×B3 (the answer being the Hochschild
homology of an appropriate bimodule), but for more complicated 4-manifolds this leaves much to
be desired. If we build our manifold up via a handle decomposition, the computation would be a
sequence of derived coends. A different handle decomposition of the same manifold would yield
a different sequence of derived coends. To show that our definition in terms of derived coends is
well-defined, we would need to show that the above two sequences of derived coends yield isomorphic
answers, and that the isomorphism does not depend on any choices we made along the way. This is
probably not easy to do.

Instead, we would prefer a definition for a derived version of AKh(W 4, L) which is manifestly
invariant. (That is, a definition that does not involve choosing a decomposition of W . After all, one
of the virtues of our starting point — TQFTs via field and local relations — is that it has just this
sort of manifest invariance.)

The solution is to replace AKh(W 4, L), which is a quotient

linear combinations of fields
/

local relations,

with an appropriately free resolution (the blob complex)

· · · → B2(W,L)→ B1(W,L)→ B0(W,L).

Here B0 is linear combinations of fields on W , B1 is linear combinations of local relations on W ,
B2 is linear combinations of relations amongst relations on W , and so on. We now have a short
exact sequence of chain complexes relating resolutions of the link L (c.f. Lemma 4.1.5 which shows
exactness with respect to boundary conditions in the context of Hochschild homology).

1.3 Formal properties

The blob complex enjoys the following list of formal properties.

Property 1.3.1 (Functoriality). The blob complex is functorial with respect to homeomorphisms.
That is, for a fixed n-dimensional system of fields F , the association

X 7→ B∗(X;F)

is a functor from n-manifolds and homeomorphisms between them to chain complexes and isomor-
phisms between them.
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As a consequence, there is an action of Homeo(X) on the chain complex B∗(X;F); this action
is extended to all of C∗(Homeo(X)) in Theorem 5.2.1 below.

The blob complex is also functorial with respect to F , although we will not address this in detail
here.

Property 1.3.2 (Disjoint union). The blob complex of a disjoint union is naturally isomorphic to
the tensor product of the blob complexes.

B∗(X1 tX2) ∼= B∗(X1)⊗ B∗(X2)

If an n-manifold X contains Y t Y op as a codimension 0 submanifold of its boundary, write
Xgl = X

⋃
Y for the manifold obtained by gluing together Y and Y op. Note that this includes

the case of gluing two disjoint manifolds together.

Property 1.3.3 (Gluing map). Given a gluing X → Xgl, there is a natural map

B∗(X)→ B∗(Xgl)

(natural with respect to homeomorphisms, and also associative with respect to iterated gluings).

Property 1.3.4 (Contractibility). With field coefficients, the blob complex on an n-ball is con-
tractible in the sense that it is homotopic to its 0-th homology. Moreover, the 0-th homology of balls
can be canonically identified with the vector spaces associated by the system of fields F to balls.

B∗(Bn;F)
∼=
qi

// H0(B∗(Bn;F))
∼= // AF (Bn)

Property 1.3.1 will be immediate from the definition given in §3.1, and we’ll recall it at the
appropriate point there. Properties 1.3.2, 1.3.3 and 1.3.4 are established in §3.2.

1.4 Specializations

The blob complex is a simultaneous generalization of the TQFT skein module construction and of
Hochschild homology.

Proposition 3.1.1 (Skein modules). The 0-th blob homology of X is the usual (dual) TQFT Hilbert
space (a.k.a. skein module) associated to X by F . (See §2.3.)

H0(B∗(X;F)) ∼= AF (X)

Theorem 4.1.1 (Hochschild homology when X = S1). The blob complex for a 1-category C on the
circle is quasi-isomorphic to the Hochschild complex.

B∗(S1; C)
∼=
qi

// Hoch∗(C).

Proposition 3.1.1 is immediate from the definition, and Theorem 4.1.1 is established in §4.
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1.5 Structure of the blob complex

In the following C∗(Homeo(X)) is the singular chain complex of the space of homeomorphisms of
X, fixed on ∂X.

Theorem 5.2.1 (C∗(Homeo(−)) action). There is a chain map

eX : C∗(Homeo(X))⊗ B∗(X)→ B∗(X).

such that

1. Restricted to C0(Homeo(X)) this is the action of homeomorphisms described in Property 1.3.1.

2. For any codimension 0-submanifold Y t Y op ⊂ ∂X the following diagram (using the gluing
maps described in Property 1.3.3) commutes (up to homotopy).

C∗(Homeo(X))⊗ B∗(X) eX
//

glHomeo
Y ⊗ glY

��

B∗(X)

glY
��

C∗(Homeo(X
⋃
Y ))⊗ B∗(X

⋃
Y )

e(X
⋃
Y )

// B∗(X
⋃
Y )

Further,

Theorem 5.2.2. The chain map of Theorem 5.2.1 is associative, in the sense that the following
diagram commutes (up to homotopy).

C∗(Homeo(X))⊗ C∗(Homeo(X))⊗ B∗(X)
1⊗eX //

◦⊗1
��

C∗(Homeo(X))⊗ B∗(X)

eX
��

C∗(Homeo(X))⊗ B∗(X)
eX // B∗(X)

Since the blob complex is functorial in the manifold X, this is equivalent to having chain maps

evX→Y : C∗(Homeo(X → Y ))⊗ B∗(X)→ B∗(Y )

for any homeomorphic pair X and Y , satisfying corresponding conditions.
In §6 we introduce the notion of disk-like n-categories, from which we can construct systems of

fields. Below, when we talk about the blob complex for a disk-like n-category, we are implicitly
passing first to this associated system of fields. Further, in §6 we also have the notion of an A∞
n-category. In that section we describe how to use the blob complex to construct A∞ n-categories
from ordinary n-categories:

Example 6.2.8 (Blob complexes of products with balls form an A∞ n-category). Let C be an
ordinary n-category. Let Y be an n−k-manifold. There is an A∞ k-category B∗(Y ; C), defined on
each m-ball D, for 0 ≤ m < k, to be the set

B∗(Y ; C)(D) = C(Y ×D)

and on k-balls D to be the set
B∗(Y ; C)(D) = B∗(Y ×D; C).

(When m = k the subsets with fixed boundary conditions form a chain complex.) These sets have
the structure of an A∞ k-category, with compositions coming from the gluing map in Property 1.3.3
and with the action of families of homeomorphisms given in Theorem 5.2.1.
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Remark. Perhaps the most interesting case is when Y is just a point; then we have a way of
building an A∞ n-category from an ordinary n-category. We think of this A∞ n-category as a free
resolution.

There is a version of the blob complex for C an A∞ n-category instead of an ordinary n-category;
this is described in §7. The definition is in fact simpler, almost tautological, and we use a different
notation, C−→(M). The next theorem describes the blob complex for product manifolds, in terms of
the A∞ blob complex of the A∞ n-categories constructed as in the previous example.

Theorem 7.1.1 (Product formula). Let W be a k-manifold and Y be an n− k manifold. Let C be
an n-category. Let B∗(Y ; C) be the A∞ k-category associated to Y via blob homology (see Example
6.2.8). Then

B∗(Y ×W ; C) ' B∗(Y ; C)−−−−−→(W ).

The statement can be generalized to arbitrary fibre bundles, and indeed to arbitrary maps (see
§7.1).

Fix a disk-like n-category C, which we’ll omit from the notation. Recall that for any (n− 1)-
manifold Y , the blob complex B∗(Y ) is naturally an A∞ category. (See Appendix C.3 for the
translation between disk-like A∞ 1-categories and the usual algebraic notion of an A∞ category.)

Theorem 7.2.1 (Gluing formula).

• For any n-manifold X, with Y a codimension 0-submanifold of its boundary, the blob complex
of X is naturally an A∞ module for B∗(Y ).

• For any n-manifold Xgl = X
⋃
Y , the blob complex B∗(Xgl) is the A∞ self-tensor product

of B∗(X) as an B∗(Y )-bimodule:

B∗(Xgl) ' B∗(X)

A∞⊗
B∗(Y )

Theorem 7.1.1 is proved in §7.1, and Theorem 7.2.1 in §7.2.

1.6 Applications

Finally, we give two applications of the above machinery.

Theorem 7.3.1 (Mapping spaces). Let π∞≤n(T ) denote the A∞ n-category based on maps Bn → T .
(The case n = 1 is the usual A∞-category of paths in T .) Then

B∗(X;π∞≤n(T )) ' C∗(Maps(X → T )).

This says that we can recover (up to homotopy) the space of maps to T via blob homology from
local data. Note that there is no restriction on the connectivity of T . The proof appears in §7.3.

Theorem 8.0.2 (Higher dimensional Deligne conjecture). The singular chains of the n-dimensional
surgery cylinder operad act on blob cochains. Since the little n+1-balls operad is a suboperad of
the n-dimensional surgery cylinder operad, this implies that the little n+1-balls operad acts on blob
cochains of the n-ball.

See §8 for a full explanation of the statement, and the proof.
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1.7 n-category terminology

Section §6 adds to the zoo of n-category definitions, and the new creatures need names. Unfortunately,
we have found it difficult to come up with terminology which satisfies all of the colleagues whom we
have consulted, or even satisfies just ourselves.

One distinction we need to make is between n-categories which are associative in dimension
n and those that are associative only up to higher homotopies. The latter are closely related to
(∞, n)-categories (i.e. ∞-categories where all morphisms of dimension greater than n are invertible),
but we don’t want to use that name since we think of the higher homotopies not as morphisms of
the n-category but rather as belonging to some auxiliary category (like chain complexes) that we are
enriching in. We have decided to call them “A∞ n-categories”, since they are a natural generalization
of the familiar A∞ 1-categories. We also considered the names “homotopy n-categories” and “infinity
n-categories”. When we need to emphasize that we are talking about an n-category which is not
A∞ in this sense we will say “ordinary n-category”.

Another distinction we need to make is between our style of definition of n-categories and
more traditional and combinatorial definitions. We will call instances of our definition “disk-like
n-categories”, since n-dimensional disks play a prominent role in the definition. (In general we
prefer “k-ball” to “k-disk”, but “ball-like” doesn’t roll off the tongue as well as “disk-like”.)

Another thing we need a name for is the ability to rotate morphisms around in various ways.
For 2-categories, “pivotal” is a standard term for what we mean. A more general term is “duality”,
but duality comes in various flavors and degrees. We are mainly interested in a very strong version
of duality, where the available ways of rotating k-morphisms correspond to all the ways of rotating
k-balls. We sometimes refer to this as “strong duality”, and sometimes we consider it to be implied by
“disk-like”. (But beware: disks can come in various flavors, and some of them, such as framed disks,
don’t actually imply much duality.) Another possibility considered here was “pivotal n-category”,
but we prefer to preserve pivotal for its usual sense. It will thus be a theorem that our disk-like
2-categories are equivalent to pivotal 2-categories, c.f. §C.2.

Finally, we need a general name for isomorphisms between balls, where the balls could be
piecewise linear or smooth or topological or Spin or framed or etc., or some combination thereof.
We have chosen to use “homeomorphism” for the appropriate sort of isomorphism, so the reader
should keep in mind that “homeomorphism” could mean PL homeomorphism or diffeomorphism
(and so on) depending on context.
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2 TQFTs via fields

In this section we review the construction of TQFTs from fields and local relations. For more
details see [Wal]. For our purposes, a TQFT is defined to be something which arises from this
construction. This is an alternative to the more common definition of a TQFT as a functor on
cobordism categories satisfying various conditions. A fully local (“down to points”) version of the
cobordism-functor TQFT definition should be equivalent to the fields-and-local-relations definition.

A system of fields is very closely related to an n-category. In one direction, Example 2.1.2 shows
how to construct a system of fields from a (traditional) n-category. We do this in detail for n = 1, 2
(§2.2) and more informally for general n. In the other direction, our preferred definition of an
n-category in §6 is essentially just a system of fields restricted to balls of dimensions 0 through n;
one could call this the “local” part of a system of fields.

Since this section is intended primarily to motivate the blob complex construction of §3.1, we
suppress some technical details. In §6 the analogous details are treated more carefully.

We only consider compact manifolds, so if Y ⊂ X is a closed codimension 0 submanifold of X,
then X \ Y implicitly means the closure X \ Y .

2.1 Systems of fields

Let Mk denote the category with objects unoriented PL manifolds of dimension k and morphisms
homeomorphisms. (We could equally well work with a different category of manifolds — oriented,
topological, smooth, spin, etc. — but for simplicity we will stick with unoriented PL.)

Fix a symmetric monoidal category S. Fields on n-manifolds will be enriched over S. Good
examples to keep in mind are S = Set or S = Vect. The presentation here requires that the objects
of S have an underlying set, but this could probably be avoided if desired.

A n-dimensional system of fields in S is a collection of functors Ck :Mk → Set for 0 ≤ k ≤ n
together with some additional data and satisfying some additional conditions, all specified below.

Before finishing the definition of fields, we give two motivating examples of systems of fields.

Example 2.1.1. Fix a target space T , and let C(X) be the set of continuous maps from X to T .

Example 2.1.2. Fix an n-category C, and let C(X) be the set of embedded cell complexes in X with
codimension-j cells labeled by j-morphisms of C. One can think of such embedded cell complexes as
dual to pasting diagrams for C. This is described in more detail in §2.2.

Now for the rest of the definition of system of fields. (Readers desiring a more precise definition
should refer to §6.1 and replace k-balls with k-manifolds.)

1. There are boundary restriction maps Ck(X)→ Ck−1(∂X), and these maps comprise a natural
transformation between the functors Ck and Ck−1 ◦ ∂. For c ∈ Ck−1(∂X), we will denote by
Ck(X; c) the subset of C(X) which restricts to c. In this context, we will call c a boundary
condition.

2. The subset Cn(X; c) of top-dimensional fields with a given boundary condition is an object in
our symmetric monoidal category S. (This condition is of course trivial when S = Set.) If
the objects are sets with extra structure (e.g. S = Vect or Kom), then this extra structure
is considered part of the definition of Cn. Any maps mentioned below between fields on
n-manifolds must be morphisms in S.

10
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Figure 2: Gluing with corners

3. Ck is compatible with the symmetric monoidal structures on Mk, Set and S: Ck(X tW ) ∼=
Ck(X)× Ck(W ), compatibly with homeomorphisms and restriction to boundary. We will call
the projections C(X1 tX2)→ C(Xi) restriction maps.

4. Gluing without corners. Let ∂X = Y t Y tW , where Y and W are closed k−1-manifolds.
Let Xgl denote X glued to itself along the two copies of Y . Using the boundary restriction
and disjoint union maps, we get two maps Ck(X)→ C(Y ), corresponding to the two copies
of Y in ∂X. Let EqY (Ck(X)) denote the equalizer of these two maps. Then (here’s the
axiom/definition part) there is an injective “gluing” map

EqY (Ck(X)) ↪→ Ck(Xgl),

and this gluing map is compatible with all of the above structure (actions of homeomorphisms,
boundary restrictions, disjoint union). Furthermore, up to homeomorphisms of Xgl isotopic to
the identity and collaring maps, the gluing map is surjective. We say that fields on Xgl in the
image of the gluing map are transverse to Y or splittable along Y .

5. Gluing with corners. Let ∂X = (Y tY )∪W , where the two copies of Y are disjoint from each
other and ∂(Y tY ) = ∂W . Let Xgl denote X glued to itself along the two copies of Y (Figure
2). Note that ∂Xgl = Wgl, where Wgl denotes W glued to itself (without corners) along two
copies of ∂Y . Let cgl ∈ Ck−1(Wgl) be a be a splittable field on Wgl and let c ∈ Ck−1(W ) be the
cut open version of cgl. Let Cck(X) denote the subset of C(X) which restricts to c on W . (This
restriction map uses the gluing without corners map above.) Using the boundary restriction
and gluing without corners maps, we get two maps Cck(X)→ C(Y ), corresponding to the two
copies of Y in ∂X. Let EqcY (Ck(X)) denote the equalizer of these two maps. Then (here’s the
axiom/definition part) there is an injective “gluing” map

EqcY (Ck(X)) ↪→ Ck(Xgl, cgl),

and this gluing map is compatible with all of the above structure (actions of homeomorphisms,
boundary restrictions, disjoint union). Furthermore, up to homeomorphisms of Xgl isotopic to
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the identity and collaring maps, the gluing map is surjective. We say that fields in the image
of the gluing map are transverse to Y or splittable along Y .

6. Product fields. There are maps Ck−1(Y )→ Ck(Y ×I), denoted c 7→ c×I. These maps comprise
a natural transformation of functors, and commute appropriately with all the structure maps
above (disjoint union, boundary restriction, etc.). Furthermore, if f : Y × I → Y × I is a
fiber-preserving homeomorphism covering f̄ : Y → Y , then f(c× I) = f̄(c)× I.

There are two notations we commonly use for gluing. One is

xgl
def
= gl(x) ∈ C(Xgl),

for x ∈ C(X). The other is

x1 • x2 def
= gl(x1 ⊗ x2) ∈ C(Xgl),

in the case that X = X1 tX2, with xi ∈ C(Xi).

Using the functoriality and product field properties above, together with boundary collar
homeomorphisms of manifolds, we can define collar maps C(M)→ C(M). Let M be an n-manifold
and Y ⊂ ∂M be a codimension zero submanifold of ∂M . Let x ∈ C(M) be a field on M and such
that ∂x is splittable along ∂Y . Let c be x restricted to Y . Let M ∪ (Y × I) denote M glued to
Y × I along Y . Then we have the glued field x • (c× I) on M ∪ (Y × I). Let f : M ∪ (Y × I)→M
be a collaring homeomorphism. Then we call the map x 7→ f(x • (c× I)) a collar map. We call the
equivalence relation generated by collar maps and homeomorphisms isotopic to the identity extended
isotopy, since the collar maps can be thought of (informally) as the limit of homeomorphisms which
expand an infinitesimally thin collar neighborhood of Y to a thicker collar neighborhood.

2.2 Systems of fields from n-categories

We now describe in more detail Example 2.1.2, systems of fields coming from embedded cell
complexes labeled by n-category morphisms.

Given an n-category C with the right sort of duality (e.g. a pivotal 2-category, *-1-category),
we can construct a system of fields as follows. Roughly speaking, C(X) will the set of all embedded
cell complexes in X with codimension i cells labeled by i-morphisms of C. We’ll spell this out for
n = 1, 2 and then describe the general case.

This way of decorating an n-manifold with an n-category is sometimes referred to as a “string
diagram”. It can be thought of as (geometrically) dual to a pasting diagram. One of the advantages
of string diagrams over pasting diagrams is that one has more flexibility in slicing them up in various
ways. In addition, string diagrams are traditional in quantum topology. The diagrams predate by
many years the terms “string diagram” and “quantum topology”, e.g. [Pen71, PR84]

If X has boundary, we require that the cell decompositions are in general position with respect
to the boundary — the boundary intersects each cell transversely, so cells meeting the boundary
are mere half-cells. Put another way, the cell decompositions we consider are dual to standard cell
decompositions of X.

We will always assume that our n-categories have linear n-morphisms.
For n = 1, a field on a 0-manifold P is a labeling of each point of P with an object (0-morphism)

of the 1-category C. A field on a 1-manifold S consists of
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• a cell decomposition of S (equivalently, a finite collection of points in the interior of S);

• a labeling of each 1-cell (and each half 1-cell adjacent to ∂S) by an object (0-morphism) of C;

• a transverse orientation of each 0-cell, thought of as a choice of “domain” and “range” for the
two adjacent 1-cells; and

• a labeling of each 0-cell by a 1-morphism of C, with domain and range determined by the
transverse orientation and the labelings of the 1-cells.

We want fields on 1-manifolds to be enriched over Vect, so we also allow formal linear combinations
of the above fields on a 1-manifold X so long as these fields restrict to the same field on ∂X.

In addition, we mod out by the relation which replaces a 1-morphism label a of a 0-cell p with
a∗ and reverse the transverse orientation of p.

If C is a *-algebra (i.e. if C has only one 0-morphism) we can ignore the labels of 1-cells, so a
field on a 1-manifold S is a finite collection of points in the interior of S, each transversely oriented
and each labeled by an element (1-morphism) of the algebra.

For n = 2, fields are just the sort of pictures based on 2-categories (e.g. tensor categories) that
are common in the literature. We describe these carefully here.

A field on a 0-manifold P is a labeling of each point of P with an object of the 2-category C. A
field of a 1-manifold is defined as in the n = 1 case, using the 0- and 1-morphisms of C. A field on a
2-manifold Y consists of

• a cell decomposition of Y (equivalently, a graph embedded in Y such that each component of
the complement is homeomorphic to a disk);

• a labeling of each 2-cell (and each partial 2-cell adjacent to ∂Y ) by a 0-morphism of C;

• a transverse orientation of each 1-cell, thought of as a choice of “domain” and “range” for the
two adjacent 2-cells;

• a labeling of each 1-cell by a 1-morphism of C, with domain and range determined by the
transverse orientation of the 1-cell and the labelings of the 2-cells;

• for each 0-cell, a homeomorphism of the boundary R of a small neighborhood of the 0-cell to
S1 such that the intersections of the 1-cells with R are not mapped to ±1 ∈ S1 (this amounts
to splitting of the link of the 0-cell into domain and range); and

• a labeling of each 0-cell by a 2-morphism of C, with domain and range determined by the
labelings of the 1-cells and the parameterizations of the previous bullet.

As in the n = 1 case, we allow formal linear combinations of fields on 2-manifolds, so long as
their restrictions to the boundary coincide.

In addition, we regard the labelings as being equivariant with respect to the * structure on
1-morphisms and pivotal structure on 2-morphisms. That is, we mod out by the relation which flips
the transverse orientation of a 1-cell and replaces its label a by a∗, as well as the relation which
changes the parameterization of the link of a 0-cell and replaces its label by the appropriate pivotal
conjugate.

For general n, a field on a k-manifold Xk consists of
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• A cell decomposition of X;

• an explicit general position homeomorphism from the link of each j-cell to the boundary of
the standard (k − j)-dimensional bihedron; and

• a labeling of each j-cell by a (k − j)-dimensional morphism of C, with domain and range
determined by the labelings of the link of j-cell.

2.3 Local relations

For convenience we assume that fields are enriched over Vect.
Local relations are subspaces U(B; c) ⊂ C(B; c) of the fields on balls which form an ideal under

gluing. Again, we give the examples first.

Example 2.3.-1 (contd.). For maps into spaces, U(B; c) is generated by fields of the form a− b ∈
C(B; c), where a and b are maps (fields) which are homotopic rel boundary.

Example 2.3.0 (contd.). For n-category pictures, U(B; c) is equal to the kernel of the evaluation
map C(B; c)→ mor(c′, c′′), where (c′, c′′) is some (any) division of c into domain and range.

These motivate the following definition.

Definition 2.3.1. A local relation is a collection subspaces U(B; c) ⊂ C(B; c), for all n-manifolds B
which are homeomorphic to the standard n-ball and all c ∈ C(∂B), satisfying the following properties.

1. Functoriality: f(U(B; c)) = U(B′, f(c)) for all homeomorphisms f : B → B′

2. Local relations imply extended isotopy: if x, y ∈ C(B; c) and x is extended isotopic to y, then
x− y ∈ U(B; c).

3. Ideal with respect to gluing: if B = B′ ∪B′′, x ∈ U(B′), and c ∈ C(B′′), then x • r ∈ U(B)

See [Wal] for further details.

2.4 Constructing a TQFT

In this subsection we briefly review the construction of a TQFT from a system of fields and local
relations. As usual, see [Wal] for more details.

We can think of a path integral Z(W ) of an n+ 1-manifold (which we’re not defining in this
context; this is just motivation) as assigning to each boundary condition x ∈ C(∂W ) a complex
number Z(W )(x). In other words, Z(W ) lies in CC(∂W ), the vector space of linear maps C(∂W )→ C.

The locality of the TQFT implies that Z(W ) in fact lies in a subspace Z(∂W ) ⊂ CC(∂W ) defined
by local projections. The linear dual to this subspace, A(∂W ) = Z(∂W )∗, can be thought of as
finite linear combinations of fields modulo local relations. (In other words, A(∂W ) is a sort of
generalized skein module.) This is the motivation behind the definition of fields and local relations
above.

In more detail, let X be an n-manifold.
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Definition 2.4.1. The TQFT invariant of X associated to a system of fields F and local relations
U is

A(X)
def
= C(X)/U(X),

where U(X) ⊂ C(X) is the space of local relations in C(X): U(X) is generated by fields of the form
u • r, where u ∈ U(B) for some embedded n-ball B ⊂ X and r ∈ C(X \B).

The blob complex, defined in the next section, is in some sense the derived version of A(X). If
X has boundary we can similarly define A(X; c) for each boundary condition c ∈ C(∂X).

The above construction can be extended to higher codimensions, assigning a k-category A(Y ) to
an n−k-manifold Y , for 0 ≤ k ≤ n. These invariants fit together via actions and gluing formulas. We
describe only the case k = 1 below. The construction of the n+1-dimensional part of the theory (the
path integral) requires that the starting data (fields and local relations) satisfy additional conditions.
We do not assume these conditions here, so when we say “TQFT” we mean a decapitated TQFT
that lacks its n+1-dimensional part. Such a “decapitated” TQFT is sometimes also called an n+ ε
or n+ 1

2 dimensional TQFT, referring to the fact that it assigns maps to mapping cylinders between
n-manifolds, but nothing to arbitrary n+1-manifolds.

Let Y be an n−1-manifold. Define a linear 1-category A(Y ) as follows. The set of objects of
A(Y ) is C(Y ). The morphisms from a to b are A(Y × I; a, b), where a and b label the two boundary
components of the cylinder Y × I. Composition is given by gluing of cylinders.

Let X be an n-manifold with boundary and consider the collection of vector spaces A(X;−)
def
=

{A(X; c)} where c ranges through C(∂X). This collection of vector spaces affords a representation
of the category A(∂X), where the action is given by gluing a collar ∂X × I to X.

Given a splitting X = X1 ∪Y X2 of a closed n-manifold X along an n−1-manifold Y , we have
left and right actions of A(Y ) on A(X1;−) and A(X2;−). The gluing theorem for n-manifolds
states that there is a natural isomorphism

A(X) ∼= A(X1;−)⊗A(Y ) A(X2;−).

A proof of this gluing formula appears in [Wal], but it also becomes a special case of Theorem 7.2.1
by taking 0-th homology.

3 The blob complex

3.1 Definitions

Let X be an n-manifold. Let (F , U) be a fixed system of fields and local relations. We’ll assume
it is enriched over Vect; if it is not we can make it so by allowing finite linear combinations of
elements of F(X; c), for fixed c ∈ F(∂X).

We want to replace the quotient

A(X)
def
= F(X)/U(X)

of Definition 2.4.1 with a resolution

· · · → B2(X)→ B1(X)→ B0(X).
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Figure 3: A 1-blob diagram.

We will define B0(X), B1(X) and B2(X), then give the general case Bk(X). In fact, on the first
pass we will intentionally describe the definition in a misleadingly simple way, then explain the
technical difficulties, and finally give a cumbersome but complete definition in Definition 3.1.6. If
(we don’t recommend it) you want to keep track of the ways in which this initial description is
misleading, or you’re reading through a second time to understand the technical difficulties, keep
note that later we will give precise meanings to “a ball in X”, “nested” and “disjoint”, that are not
quite the intuitive ones. Moreover some of the pieces into which we cut manifolds below are not
themselves manifolds, and it requires special attention to define fields on these pieces.

We of course define B0(X) = F(X). (If X has nonempty boundary, instead define B0(X; c) =
F(X; c) for each c ∈ F(∂X). We’ll omit such boundary conditions from the notation in the rest of
this section.) In other words, B0(X) is just the vector space of all fields on X.

We want the vector space B1(X) to capture “the space of all local relations that can be imposed
on B0(X)”. Thus we say a 1-blob diagram consists of:

• An closed ball in X (“blob”) B ⊂ X.

• A boundary condition c ∈ F(∂B) = F(∂(X \B)).

• A field r ∈ F(X \B; c).

• A local relation field u ∈ U(B; c).

(See Figure 3.) Since c is implicitly determined by u or r, we usually omit it from the notation. In
order to get the linear structure correct, we define

B1(X)
def
=
⊕
B

⊕
c

U(B; c)⊗F(X \B; c).

The first direct sum is indexed by all blobs B ⊂ X, and the second by all boundary conditions
c ∈ F(∂B). Note that B1(X) is spanned by 1-blob diagrams (B, u, r).

Define the boundary map ∂ : B1(X)→ B0(X) by

(B, u, r) 7→ u • r,

where u • r denotes the field on X obtained by gluing u to r. In other words ∂ : B1(X)→ B0(X) is
given by just erasing the blob from the picture (but keeping the blob label u).

Note that directly from the definition we have
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Figure 4: A disjoint 2-blob diagram.

Proposition 3.1.1. The skein module A(X) is naturally isomorphic to B0(X)/∂(B1(X))) =
H0(B∗(X)).

This also establishes the second half of Property 1.3.4.
Next, we want the vector space B2(X) to capture “the space of all relations (redundancies,

syzygies) among the local relations encoded in B1(X)”. A 2-blob diagram, comes in one of two
types, disjoint and nested. A disjoint 2-blob diagram consists of

• A pair of closed balls (blobs) B1, B2 ⊂ X with disjoint interiors.

• A field r ∈ F(X \ (B1 ∪B2); c1, c2) (where ci ∈ F(∂Bi)).

• Local relation fields ui ∈ U(Bi; ci), i = 1, 2.

(See Figure 4.) We also identify (B1, B2, u1, u2, r) with −(B2, B1, u2, u1, r); reversing the order of
the blobs changes the sign. Define ∂(B1, B2, u1, u2, r) = (B2, u2, u1 • r)− (B1, u1, u2 • r) ∈ B1(X).
In other words, the boundary of a disjoint 2-blob diagram is the sum (with alternating signs) of the
two ways of erasing one of the blobs. It’s easy to check that ∂2 = 0.

A nested 2-blob diagram consists of

• A pair of nested balls (blobs) B1 ⊆ B2 ⊆ X.

• A field r′ ∈ F(B2 \B1; c1, c2) (for some c1 ∈ F(∂B1) and c2 ∈ F(∂B2)).

• A field r ∈ F(X \B2; c2).

• A local relation field u ∈ U(B1; c1).

(See Figure 5.) Define ∂(B1, B2, u, r
′, r) = (B2, u • r′, r)− (B1, u, r

′ • r). As in the disjoint 2-blob
case, the boundary of a nested 2-blob is the alternating sum of the two ways of erasing one of the
blobs. When we erase the inner blob, the outer blob inherits the label u • r′. It is again easy to
check that ∂2 = 0. Note that the requirement that local relations are an ideal with respect to gluing
guarantees that u • r′ ∈ U(B2).

As with the 1-blob diagrams, in order to get the linear structure correct the actual definition is

B2(X)
def
=

 ⊕
B1,B2 disjoint

⊕
c1,c2

U(B1; c1)⊗ U(B2; c2)⊗F(X \ (B1 ∪B2); c1, c2)

⊕
 ⊕
B1⊂B2

⊕
c1,c2

U(B1; c1)⊗F(B2 \B1; c1, c2)⊗F(X \B2; c2)

 .
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Figure 5: A nested 2-blob diagram.

Roughly, Bk(X) is generated by configurations of k blobs, pairwise disjoint or nested, along with
fields on all the components that the blobs divide X into. Blobs which have no other blobs inside
are called ‘twig blobs’, and the fields on the twig blobs must be local relations. The boundary is the
alternating sum of erasing one of the blobs. In order to describe this general case in full detail, we
must give a more precise description of which configurations of balls inside X we permit. These
configurations are generated by two operations:

• For any (possibly empty) configuration of blobs on an n-ball D, we can add D itself as an
outermost blob. (This is used in the proof of Proposition 3.2.1.)

• If X ′ is obtained from X by gluing, then any permissible configuration of blobs on X gives
rise to a permissible configuration on X ′. (This is necessary for Proposition 3.2.4.)

Combining these two operations can give rise to configurations of blobs whose complement in X is
not a manifold. Thus will need to be more careful when speaking of a field r on the complement of
the blobs.

Example 3.1.2. Consider the four subsets of R3,

A = [0, 1]× [0, 1]× [0, 1]

B = [0, 1]× [−1, 0]× [0, 1]

C = [−1, 0]× {(y, z) | z sin(1/z) ≤ y ≤ 1, z ∈ [0, 1]}
D = [−1, 0]× {(y, z) | − 1 ≤ y ≤ z sin(1/z), z ∈ [0, 1]} .

Here A ∪ B = [0, 1] × [−1, 1] × [0, 1] and C ∪ D = [−1, 0] × [−1, 1] × [0, 1]. Now, {A} is a valid
configuration of blobs in A ∪ B, and {C} is a valid configuration of blobs in C ∪D, so we must
allow {A,C} as a configuration of blobs in [−1, 1]2 × [0, 1]. Note however that the complement is
not a manifold.

Definition 3.1.3. A gluing decomposition of an n-manifold X is a sequence of manifolds M0 →
M1 → · · · →Mm = X such that each Mk is obtained from Mk−1 by gluing together some disjoint
pair of homeomorphic n−1-manifolds in the boundary of Mk−1. If, in addition, M0 is a disjoint
union of balls, we call it a ball decomposition.

Given a gluing decomposition M0 → M1 → · · · → Mm = X, we say that a field is splittable
along it if it is the image of a field on M0.
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In the example above, note that

A tB t C tD → (A ∪B) t (C ∪D)→ A ∪B ∪ C ∪D

is a ball decomposition, but other sequences of gluings starting from AtBtCtD have intermediate
steps which are not manifolds.

We’ll now slightly restrict the possible configurations of blobs.

Definition 3.1.4. A configuration of k blobs in X is an ordered collection of k subsets {B1, . . . Bk}
of X such that there exists a gluing decomposition M0 → · · · →Mm = X of X and for each subset
Bi there is some 0 ≤ r ≤ m and some connected component M ′r of Mr which is a ball, so Bi is the
image of M ′r in X. We say that such a gluing decomposition is compatible with the configuration.
A blob Bi is a twig blob if no other blob Bj is a strict subset of it.

In particular, this implies what we said about blobs above: that for any two blobs in a
configuration of blobs in X, they either have disjoint interiors, or one blob is contained in the other.
We describe these as disjoint blobs and nested blobs. Note that nested blobs may have boundaries
that overlap, or indeed coincide. Blobs may meet the boundary of X. Further, note that blobs need
not actually be embedded balls in X, since parts of the boundary of the ball M ′r may have been
glued together.

Note that often the gluing decomposition for a configuration of blobs may just be the trivial
one: if the boundaries of all the blobs cut X into pieces which are all manifolds, we can just take
M0 to be these pieces, and M1 = X.

In the informal description above, in the definition of a k-blob diagram we asked for any
collection of k balls which were pairwise disjoint or nested. We now further insist that the balls are
a configuration in the sense of Definition 3.1.4. Also, we asked for a local relation on each twig blob,
and a field on the complement of the twig blobs; this is unsatisfactory because that complement
need not be a manifold. Thus, the official definitions are

Definition 3.1.5. A k-blob diagram on X consists of

• a configuration {B1, . . . Bk} of k blobs in X,

• and a field r ∈ F(X) which is splittable along some gluing decomposition compatible with that
configuration,

such that the restriction ui of r to each twig blob Bi lies in the subspace U(Bi) ⊂ F(Bi). (See
Figure 6.) More precisely, each twig blob Bi is the image of some ball M ′r as above, and it is really
the restriction to M ′r that must lie in the subspace U(M ′r).

and

Definition 3.1.6. The k-th vector space Bk(X) of the blob complex of X is the direct sum over all
configurations of k blobs in X of the vector space of k-blob diagrams with that configuration, modulo
identifying the vector spaces for configurations that only differ by a permutation of the balls by the
sign of that permutation. The differential Bk(X)→ Bk−1(X) is, as above, the signed sum of ways
of forgetting one blob from the configuration, preserving the field r:

∂({B1, . . . Bk}, r) =

k∑
i=1

(−1)i+1({B1, . . . , B̂i, . . . , Bk}, r)
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Figure 6: A k-blob diagram.

We readily see that if a gluing decomposition is compatible with some configuration of blobs,
then it is also compatible with any configuration obtained by forgetting some blobs, ensuring that
the differential in fact lands in the space of k−1-blob diagrams. A slight compensation to the
complication of the official definition arising from attention to splitting is that the differential now
just preserves the entire field r without having to say anything about gluing together fields on
smaller components.

Note that Property 1.3.1, that the blob complex is functorial with respect to homeomorphisms,
is immediately obvious from the definition. A homeomorphism acts in an obvious way on blobs and
on fields.

We define the support of a blob diagram b, supp(b) ⊂ X, to be the union of the blobs of b.

For y ∈ B∗(X) with y =
∑
cibi (ci a non-zero number, bi a blob diagram), we define supp(y)

def
=⋃

i supp(bi).

Remark 3.1.7. We note that blob diagrams in X have a structure similar to that of a simplicial set,
but with simplices replaced by a more general class of combinatorial shapes. Let P be the minimal
set of (isomorphisms classes of) polyhedra which is closed under products and cones, and which
contains the point. We can associate an element p(b) of P to each blob diagram b (equivalently, to
each rooted tree) according to the following rules:

• p(∅) = pt, where ∅ denotes a 0-blob diagram or empty tree;

• p(a t b) = p(a)× p(b), where a t b denotes the distant (non-overlapping) union of two blob
diagrams (equivalently, join two trees at the roots); and

• p(b̄) = cone(p(b)), where b̄ is obtained from b by adding an outer blob which encloses all the
others (equivalently, add a new edge to the root, with the new vertex becoming the root).

For example, a diagram of k strictly nested blobs corresponds to a k-simplex, while a diagram
of k disjoint blobs corresponds to a k-cube. (When the fields come from an n-category, this
correspondence works best if we think of each twig label ui as having the form x− s(e(x)), where x
is an arbitrary field on Bi, e : F(Bi)→ C is the evaluation map, and s : C → F(Bi) is some fixed
section of e.)

For lack of a better name, we’ll call elements of P cone-product polyhedra, and say that blob
diagrams have the structure of a cone-product set (analogous to simplicial set).
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3.2 Basic properties

In this section we complete the proofs of Properties 1.3.2–1.3.4. Throughout the paper, where
possible, we prove results using Properties 1.3.1–1.3.4, rather than the actual definition of blob
homology. This allows the possibility of future improvements on or alternatives to our definition.
In fact, we hope that there may be a characterization of the blob complex in terms of Properties
1.3.1–1.3.4, but at this point we are unaware of one.

Recall Property 1.3.2, that there is a natural isomorphism B∗(X t Y ) ∼= B∗(X)⊗ B∗(Y ).

Proof of Property 1.3.2. Given blob diagrams b1 on X and b2 on Y , we can combine them (putting
the b1 blobs before the b2 blobs in the ordering) to get a blob diagram (b1, b2) on X t Y . Because
of the blob reordering relations, all blob diagrams on X t Y arise this way. In the other direction,
any blob diagram on X t Y is equal (up to sign) to one that puts X blobs before Y blobs in the
ordering, and so determines a pair of blob diagrams on X and Y . These two maps are compatible
with our sign conventions. (We follow the usual convention for tensors products of complexes, as in
e.g. [GM96]: d(a⊗ b) = da⊗ b+ (−1)deg(a)a⊗ db.) The two maps are inverses of each other.

For the next proposition we will temporarily restore n-manifold boundary conditions to the
notation.

Suppose that for all c ∈ C(∂Bn) we have a splitting s : H0(B∗(Bn, c))→ B0(Bn; c) of the quotient
map p : B0(Bn; c)→ H0(B∗(Bn, c)). For example, this is always the case if the coefficient ring is a
field. Then

Proposition 3.2.1. For all c ∈ C(∂Bn) the natural map p : B∗(Bn, c)→ H0(B∗(Bn, c)) is a chain
homotopy equivalence with inverse s : H0(B∗(Bn, c))→ B∗(Bn; c). Here we think of H0(B∗(Bn, c))
as a 1-step complex concentrated in degree 0.

Proof. By assumption p◦s = 1, so all that remains is to find a degree 1 map h : B∗(Bn; c)→ B∗(Bn; c)
such that ∂h+ h∂ = 1− s ◦ p. For i ≥ 1, define hi : Bi(Bn; c)→ Bi+1(Bn; c) by adding an (i+1)-st
blob equal to all of Bn. In other words, add a new outermost blob which encloses all of the others.
Define h0 : B0(Bn; c) → B1(Bn; c) by setting h0(x) equal to the 1-blob with blob Bn and label
x− s(p(x)) ∈ U(Bn; c).

This proves Property 1.3.4 (the second half of the statement of this Property was immediate
from the definitions). Note that even when there is no splitting s, we can let h0 = 0 and get a
homotopy equivalence to the 2-step complex U(Bn; c)→ C(Bn; c).

For fields based on n-categories, H0(B∗(Bn; c)) ∼= mor(c′, c′′), where (c′, c′′) is some (any) splitting
of c into domain and range.

Corollary 3.2.2. If X is a disjoint union of n-balls, then B∗(X; c) is contractible.

Proof. This follows from Properties 1.3.2 and 1.3.4.

Recall the definition of the support of a blob diagram as the union of all the blobs of the diagram.
For future use we prove the following lemma.

Lemma 3.2.3. Let L∗ ⊂ B∗(X) be a subcomplex generated by some subset of the blob diagrams on
X, and let f : L∗ → L∗ be a chain map which does not increase supports and which induces an
isomorphism on H0(L∗). Then f is homotopic (in B∗(X)) to the identity L∗ → L∗.
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Proof. We will use the method of acyclic models. Let b be a blob diagram of L∗, let S ⊂ X be the
support of b, and let r be the restriction of b to X \ S. Note that S is a disjoint union of balls.

Assign to b the acyclic (in positive degrees) subcomplex T (b)
def
= r • B∗(S). Note that if a diagram b′

is part of ∂b then T (B′) ⊂ T (b). Both f and the identity are compatible with T (in the sense of
acyclic models, §A), so f and the identity map are homotopic.

For the next proposition we will temporarily restore n-manifold boundary conditions to the
notation. Let X be an n-manifold, with ∂X = Y ∪ Y ∪ Z. Gluing the two copies of Y together
yields an n-manifold Xgl with boundary Zgl. Given compatible fields (boundary conditions) a, b
and c on Y , Y and Z, we have the blob complex B∗(X; a, b, c). If b = a, then we can glue up blob
diagrams on X to get blob diagrams on Xgl. This proves Property 1.3.3, which we restate here in
more detail.

Proposition 3.2.4. There is a natural chain map

gl :
⊕
a

B∗(X; a, a, c)→ B∗(Xgl; cgl).

The sum is over all fields a on Y compatible at their (n−2-dimensional) boundaries with c. “Natural”
means natural with respect to the actions of diffeomorphisms.

This map is very far from being an isomorphism, even on homology. We fix this deficit in §7.2
below.

4 Hochschild homology when n = 1

4.1 Outline

So far we have provided no evidence that blob homology is interesting in degrees greater than zero.
In this section we analyze the blob complex in dimension n = 1. We find that B∗(S1, C) is homotopy
equivalent to the Hochschild complex of the 1-category C. (Recall from §2.2 that a 1-category gives
rise to a 1-dimensional system of fields; as usual, talking about the blob complex with coefficients in
a n-category means first passing to the corresponding n dimensional system of fields.) Thus the
blob complex is a natural generalization of something already known to be interesting in higher
homological degrees.

It is also worth noting that the original idea for the blob complex came from trying to find a
more “local” description of the Hochschild complex.

Let C be a *-1-category. Then specializing the definition of the associated system of fields from
§2.2 above to the case n = 1 we have:

• C(pt) = ob(C) .

• Let R be a 1-manifold and c ∈ C(∂R). Then an element of C(R; c) is a collection of (transversely
oriented) points in the interior of R, each labeled by a morphism of C. The intervals between
the points are labeled by objects of C, consistent with the boundary condition c and the
domains and ranges of the point labels.

22



• There is an evaluation map e : C(I; a, b)→ mor(a, b) given by composing the morphism labels
of the points. Note that we also need the * of *-1-category here in order to make all the
morphisms point the same way.

• For x ∈ mor(a, b) let χ(x) ∈ C(I; a, b) be the field with a single point (at some standard
location) labeled by x. Then the kernel of the evaluation map U(I; a, b) is generated by things
of the form y − χ(e(y)). Thus we can, if we choose, restrict the blob twig labels to things of
this form.

We want to show that B∗(S1) is homotopy equivalent to the Hochschild complex of C. In order
to prove this we will need to extend the definition of the blob complex to allow points to also be
labeled by elements of C-C-bimodules. (See Subsections 6.5 and 6.7 for a more general version of
this construction that applies in all dimensions.)

Fix points p1, . . . , pk ∈ S1 and C-C-bimodules M1, . . .Mk. We define a blob-like complex
K∗(S1, (pi), (Mi)). The fields have elements of Mi labeling the fixed points pi and elements of C
labeling other (variable) points. As before, the regions between the marked points are labeled by
objects of C. The blob twig labels lie in kernels of evaluation maps. (The range of these evaluation
maps is a tensor product (over C) of Mi’s, corresponding to the pi’s that lie within the twig blob.)
Let K∗(M) = K∗(S1, (∗), (M)), where ∗ ∈ S1 is some standard base point. In other words, fields
for K∗(M) have an element of M at the fixed point ∗ and elements of C at variable other points.

In the theorems, propositions and lemmas below we make various claims about complexes being
homotopy equivalent. In all cases the complexes in question are free (and hence projective), so it
suffices to show that they are quasi-isomorphic.

We claim that

Theorem 4.1.1. The blob complex B∗(S1;C) on the circle is homotopy equivalent to the usual
Hochschild complex for C.

This follows from two results. First, we see that

Lemma 4.1.2. The complex K∗(C) (here C is being thought of as a C-C-bimodule, not a category)
is homotopy equivalent to the blob complex B∗(S1;C).

The proof appears below.
Next, we show that for any C-C-bimodule M ,

Proposition 4.1.3. The complex K∗(M) is homotopy equivalent to Hoch∗(M), the usual Hochschild
complex of M .

Proof. Recall that the usual Hochschild complex of M is uniquely determined, up to quasi-
isomorphism, by the following properties:

1. Hoch∗(M1 ⊕M2) ∼= Hoch∗(M1)⊕Hoch∗(M2).

2. An exact sequence 0 → M1 ↪→ M2 � M3 → 0 gives rise to an exact sequence 0 →
Hoch∗(M1) ↪→ Hoch∗(M2)� Hoch∗(M3)→ 0.

3. HH0(M) is isomorphic to the coinvariants of M , coinv(M) = M/〈cm−mc〉.
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4. Hoch∗(C⊗C) is contractible. (Here C⊗C denotes the free C-C-bimodule with one generator.)
That is, Hoch∗(C ⊗C) is quasi-isomorphic to its 0-th homology (which in turn, by 3 above, is
just C) via the quotient map Hoch0 � HH0.

(Together, these just say that Hochschild homology is “the derived functor of coinvariants”.) We’ll
first recall why these properties are characteristic.

Take some C-C bimodule M , and choose a free resolution

· · · → F2
f2−→ F1

f1−→ F0.

We will show that for any functor P satisfying properties 1, 2, 3 and 4, there is a quasi-isomorphism

P∗(M) ∼= coinv(F∗).

Observe that there’s a quotient map π : F0 �M , and by construction the cone of the chain map
π : F∗ →M is acyclic. Now construct the total complex Pi(Fj), with i, j ≥ 0, graded by i+ j. We
have two chain maps

Pi(F∗)
Pi(π)−−−→ Pi(M)

and

P∗(Fj)
P0(Fj)�H0(P∗(Fj))−−−−−−−−−−−−−→ coinv(Fj).

The cone of each chain map is acyclic. In the first case, this is because the “rows” indexed by i are
acyclic since Pi is exact. In the second case, this is because the “columns” indexed by j are acyclic,
since Fj is free. Because the cones are acyclic, the chain maps are quasi-isomorphisms. Composing
one with the inverse of the other, we obtain the desired quasi-isomorphism

P∗(M)
∼=−−→
q.i.

coinv(F∗).

Proposition 4.1.3 then follows from the following lemmas, establishing that K∗ has precisely
these required properties.

Lemma 4.1.4. Directly from the definition, K∗(M1 ⊕M2) ∼= K∗(M1)⊕K∗(M2).

Lemma 4.1.5. An exact sequence 0 → M1 ↪→ M2 � M3 → 0 gives rise to an exact sequence
0→ K∗(M1) ↪→ K∗(M2)� K∗(M3)→ 0.

Lemma 4.1.6. H0(K∗(M)) is isomorphic to the coinvariants of M .

Lemma 4.1.7. K∗(C ⊗ C) is quasi-isomorphic to H0(K∗(C ⊗ C)) ∼= C.

The remainder of this section is devoted to proving Lemmas 4.1.2, 4.1.5, 4.1.6 and 4.1.7.
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4.2 Technical details

Proof of Lemma 4.1.2. We show that K∗(C) is quasi-isomorphic to B∗(S1). K∗(C) differs from
B∗(S1) only in that the base point * is always a labeled point in K∗(C), while in B∗(S1) it may or
may not be. In particular, there is an inclusion map i : K∗(C)→ B∗(S1).

We want to define a homotopy inverse to the above inclusion, but before doing so we must
replace B∗(S1) with a homotopy equivalent subcomplex. Let J∗ ⊂ B∗(S1) be the subcomplex where
* does not lie on the boundary of any blob. Note that the image of i is contained in J∗. Note also
that in B∗(S1) (away from J∗) a blob diagram could have multiple (nested) blobs whose boundaries
contain *, on both the right and left of *.

We claim that J∗ is homotopy equivalent to B∗(S1). Let F ε∗ ⊂ B∗(S1) be the subcomplex where
either (a) the point * is not on the boundary of any blob or (b) there are no labeled points or
blob boundaries within distance ε of *, other than blob boundaries at * itself. Note that all blob
diagrams are in F ε∗ for ε sufficiently small. Let b be a blob diagram in F ε∗ . Define f(b) to be the
result of moving any blob boundary points which lie on * to distance ε from *. (Move right or left
so as to shrink the blob.) Extend to get a chain map f : F ε∗ → F ε∗ . By Lemma 3.2.3, f is homotopic
to the identity. Since the image of f is in J∗, and since any blob chain is in F ε∗ for ε sufficiently
small, we have that J∗ is homotopic to all of B∗(S1).

We now define a homotopy inverse s : J∗ → K∗(C) to the inclusion i. If y is a field defined on
a neighborhood of *, define s(y) = y if * is a labeled point in y. Otherwise, define s(y) to be the
result of adding a label 1 (identity morphism) at *. Extending linearly, we get the desired map
s : J∗ → K∗(C). It is easy to check that s is a chain map and s ◦ i = 1.

Let Nε denote the ball of radius ε around *. Let Lε∗ ⊂ J∗ be the subcomplex spanned by blob
diagrams where there are no labeled points in Nε, except perhaps ∗, and Nε is either disjoint from
or contained in every blob in the diagram. Note that for any chain x ∈ J∗, x ∈ Lε∗ for sufficiently
small ε.

We define a degree 1 map jε : Lε∗ → Lε∗ as follows. Let x ∈ Lε∗ be a blob diagram. If ∗ is not
contained in any twig blob, we define jε(x) by adding Nε as a new twig blob, with label y − s(y)
where y is the restriction of x to Nε. If ∗ is contained in a twig blob B with label u =

∑
zi, write yi

for the restriction of zi to Nε, and let xi be equal to x on S1 \B, equal to zi on B \Nε, and have
an additional blob Nε with label yi − s(yi). Define jε(x) =

∑
xi.

It is not hard to show that on Lε∗

∂jε + jε∂ = 1− i ◦ s.

(To get the signs correct here, we add Nε as the first blob.) Since for ε small enough Lε∗ captures all
of the homology of J∗, it follows that the mapping cone of i ◦ s is acyclic and therefore (using the
fact that these complexes are free) i ◦ s is homotopic to the identity.

Proof of Lemma 4.1.5. We now prove that K∗ is an exact functor.
As a warm-up, we prove that the functor on C-C bimodules

M 7→ ker(C ⊗M ⊗ C c1⊗m⊗c2 7→c1mc2−−−−−−−−−−−→M)

is exact. Suppose we have a short exact sequence of C-C bimodules

0 // K
� � f

// E
g

// // Q // 0 .

25



We’ll write f̂ and ĝ for the image of f and g under the functor, so

f̂(
∑

i ai ⊗ ki ⊗ bi) =
∑

i ai ⊗ f(ki)⊗ bi,

and similarly for ĝ. Most of what we need to check is easy. Suppose we have
∑

i(ai ⊗ ki ⊗ bi) ∈
ker(C ⊗K ⊗ C → K), assuming without loss of generality that {ai ⊗ bi}i is linearly independent
in C ⊗ C, and f̂(a ⊗ k ⊗ b) = 0 ∈ ker(C ⊗ E ⊗ C → E). We must then have f(ki) = 0 ∈ E for
each i, which implies ki = 0 itself. If

∑
i(ai ⊗ ei ⊗ bi) ∈ ker(C ⊗ E ⊗ C → E) is in the image of

ker(C ⊗K ⊗ C → K) under f̂ , again by assuming the set {ai ⊗ bi}i is linearly independent we can
deduce that each ei is in the image of the original f , and so is in the kernel of the original g, and
so ĝ(

∑
i ai ⊗ ei ⊗ bi) = 0. If ĝ(

∑
i ai ⊗ ei ⊗ bi) = 0, then each g(ei) = 0, so ei = f(ẽi) for some

ẽi ∈ K, and
∑

i ai ⊗ ei ⊗ bi = f̂(
∑

i ai ⊗ ẽi ⊗ bi). Finally, the interesting step is in checking that any
q =

∑
i ai ⊗ qi ⊗ bi such that

∑
i aiqibi = 0 is in the image of ker(C ⊗ E ⊗ C → C) under ĝ. For

each i, we can find q̃i so g(q̃i) = qi. However
∑

i aiq̃ibi need not be zero. Consider then

q̃ =
∑
i

(ai ⊗ q̃i ⊗ bi)− 1⊗
(∑

i

aiq̃ibi

)
⊗ 1.

Certainly q̃ ∈ ker(C ⊗ E ⊗ C → E). Further,

ĝ(q̃) =
∑
i

(ai ⊗ g(q̃i)⊗ bi)− 1⊗
(∑

i

aig(q̃i

)
bi)⊗ 1

= q − 0

(here we used that g is a map of C-C bimodules, and that
∑

i aiqibi = 0).
Similar arguments show that the functors

(4.1) M 7→ ker(C⊗k ⊗M ⊗ C⊗l →M)

are all exact too. Moreover, tensor products of such functors with each other and with C or
ker(C⊗k → C) (e.g., producing the functor M 7→ ker(M ⊗ C → M)⊗ C ⊗ ker(C ⊗ C → M)) are
all still exact.

Finally, then we see that the functor K∗ is simply an (infinite) direct sum of copies of this sort
of functor. The direct sum is indexed by configurations of nested blobs and of labels; for each
such configuration, we have one of the above tensor product functors, with the labels of twig blobs
corresponding to tensor factors as in (4.1) or ker(C⊗k → C) (depending on whether they contain a
marked point pi), and all other labelled points corresponding to tensor factors of C and M .

Proof of Lemma 4.1.6. We show that H0(K∗(M)) is isomorphic to the coinvariants of M .
We define a map ev : K0(M)→M . If x ∈ K0(M) has the label m ∈M at ∗, and labels ci ∈ C

at the other labeled points of S1, reading clockwise from ∗, we set ev(x) = mc1 · · · ck. We can think
of this as ev : M ⊗ C⊗k → M , for each direct summand of K0(M) indexed by a configuration of
labeled points.

There is a quotient map π : M → coinvM . We claim that the composition π ◦ ev is well-defined
on the quotient H0(K∗(M)); i.e. that π(ev(∂y)) = 0 for all y ∈ K1(M). There are two cases,
depending on whether the blob of y contains the point *. If it doesn’t, then suppose y has label
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m at ∗, labels ci at other labeled points outside the blob, and the field inside the blob is a sum,
with the j-th term having labeled points dj,i. Then

∑
j dj,1 ⊗ · · · ⊗ dj,kj ∈ ker(

⊕
k C
⊗k → C), and

so ev(∂y) = 0, because

C⊗`1 ⊗ ker(
⊕
k

C⊗k → C)⊗ C⊗`2 ⊂ ker(
⊕
k

C⊗k → C).

Similarly, if ∗ is contained in the blob, then the blob label is a sum, with the j-th term have labelled
points dj,i to the left of ∗, mj at ∗, and d′j,i to the right of ∗, and there are labels ci at the labeled
points outside the blob. We know that∑

j

dj,1 ⊗ · · · ⊗ dj,kj ⊗mj ⊗ d′j,1 ⊗ · · · ⊗ d′j,k′j ∈ ker(
⊕
k,k′

C⊗k ⊗M ⊗ C⊗k′⊗ →M),

and so

ev(∂y) =
∑
j

mjd
′
j,1 · · · d′j,k′jc1 · · · ckdj,1 · · · dj,kj

=
∑
j

dj,1 · · · dj,kjmjd
′
j,1 · · · d′j,k′jc1 · · · ck

= 0

where this time we use the fact that we’re mapping to coinvM , not just M .
The map π ◦ ev : H0(K∗(M))→ coinvM is clearly surjective (ev surjects onto M); we now show

that it’s injective. This is equivalent to showing that

ev−1(ker(π)) ⊂ ∂K1(M).

The above inclusion follows from
ker(ev) ⊂ ∂K1(M)

and
ker(π) ⊂ ev(∂K1(M)).

Let x =
∑
xi be in the kernel of ev, where each xi is a configuration of labeled points in S1. Since

the sum is finite, we can find an interval (blob) B in S1 such that for each i the C-labeled points of
xi all lie to the right of the base point *. Let yi be the restriction of xi to B and y =

∑
yi. Let r

be the “empty” field on S1 \B. It follows that y ∈ U(B) and

∂(B, y, r) = x.

ker(π) is generated by elements of the form cm − mc. As shown in Figure 8, cm − mc lies in
ev(∂K1(M)).

Proof of Lemma 4.1.7. We show that K∗(C⊗C) is quasi-isomorphic to the 0-step complex C. We’ll
do this in steps, establishing quasi-isomorphisms and homotopy equivalences

K∗(C ⊗ C)
∼=−−→
q.i.

K ′∗
'−−−→

htpy
K ′′∗

∼=−−→
q.i.

C.
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y = sε(y) =

Figure 7: Defining sε.

Let K ′∗ ⊂ K∗(C ⊗ C) be the subcomplex where the label of the point ∗ is 1⊗ 1 ∈ C ⊗ C. We
will show that the inclusion i : K ′∗ → K∗(C ⊗ C) is a quasi-isomorphism.

Fix a small ε > 0. Let Nε be the ball of radius ε around ∗ ∈ S1. Let Kε
∗ ⊂ K∗(C ⊗ C) be the

subcomplex generated by blob diagrams b such that Nε is either disjoint from or contained in each
blob of b, and the only labeled point inside Nε is ∗. For a field y on Nε, let sε(y) be the equivalent
picture with ∗ labeled by 1 ⊗ 1 and the only other labeled points at distance ±ε/2 from ∗. (See
Figure 7.) Note that y − sε(y) ∈ U(Nε). Let σε : Kε

∗ → Kε
∗ be the chain map given by replacing the

restriction y to Nε of each field appearing in an element of Kε
∗ with sε(y). Note that σε(x) ∈ K ′∗.

Define a degree 1 map jε : Kε
∗ → Kε

∗ as follows. Let x ∈ Kε
∗ be a blob diagram. If ∗ is not

contained in any twig blob, jε(x) is obtained by adding Nε to x as a new twig blob, with label
y−sε(y), where y is the restriction of x to Nε. If ∗ is contained in a twig blob B with label u =

∑
zi,

jε(x) is obtained as follows. Let yi be the restriction of zi to Nε. Let xi be equal to x outside of B,
equal to zi on B \Nε, and have an additional blob Nε with label yi − sε(yi). Define jε(x) =

∑
xi.

Note that if x ∈ K ′∗ ∩Kε
∗ then jε(x) ∈ K ′∗ also.

The key property of jε is
∂jε + jε∂ = 1− σε.

(Again, to get the correct signs, Nε must be added as the first blob.) If jε were defined on all of
K∗(C ⊗ C), this would show that σε is a homotopy inverse to the inclusion K ′∗ → K∗(C ⊗ C). One
strategy would be to try to stitch together various jε for progressively smaller ε and show that K ′∗
is homotopy equivalent to K∗(C ⊗ C). Instead, we’ll be less ambitious and just show that K ′∗ is
quasi-isomorphic to K∗(C ⊗ C).

If x is a cycle in K∗(C ⊗ C), then for sufficiently small ε we have x ∈ Kε
∗. (This is true for any

chain in K∗(C ⊗ C), since chains are sums of finitely many blob diagrams.) Then x is homologous
to σε(x), which is in K ′∗, so the inclusion map K ′∗ ⊂ K∗(C ⊗ C) is surjective on homology. If
y ∈ K∗(C ⊗ C) and ∂y = x ∈ K∗(C ⊗ C), then y ∈ Kε

∗ for some ε and

∂y = ∂(σε(y) + jε(x)).

Since σε(y) + jε(x) ∈ K ′∗, it follows that the inclusion map is injective on homology. This completes
the proof that K ′∗ is quasi-isomorphic to K∗(C ⊗ C).

Let K ′′∗ ⊂ K ′∗ be the subcomplex of K ′∗ where ∗ is not contained in any blob. We will show that
the inclusion i : K ′′∗ → K ′∗ is a homotopy equivalence.

First, a lemma: Let G′′∗ and G′∗ be defined similarly to K ′′∗ and K ′∗, except with S1 replaced by
some neighborhood N of ∗ ∈ S1. (G′′∗ and G′∗ depend on N , but that is not reflected in the notation.)
Then G′′∗ and G′∗ are both contractible and the inclusion G′′∗ ⊂ G′∗ is a homotopy equivalence. For
G′∗ the proof is the same as in Lemma 3.2.1, except that the splitting G′0 → H0(G

′
∗) concentrates

the point labels at two points to the right and left of ∗. For G′′∗ we note that any cycle is supported
away from ∗. Thus any cycle lies in the image of the normal blob complex of a disjoint union of two
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intervals, which is contractible by Lemma 3.2.1 and Corollary 3.2.2. Finally, it is easy to see that
the inclusion G′′∗ → G′∗ induces an isomorphism on H0.

Next we construct a degree 1 map (homotopy) h : K ′∗ → K ′∗ such that for all x ∈ K ′∗ we have

x− ∂h(x)− h(∂x) ∈ K ′′∗ .

Since K ′0 = K ′′0 , we can take h0 = 0. Let x ∈ K ′1, with single blob B ⊂ S1. If ∗ /∈ B, then x ∈ K ′′1
and we define h1(x) = 0. If ∗ ∈ B, then we work in the image of G′∗ and G′′∗ (with B playing the
role of N above). Choose x′′ ∈ G′′1 such that ∂x′′ = ∂x. Since G′∗ is contractible, there exists y ∈ G′2
such that ∂y = x− x′′. Define h1(x) = y. The general case is similar, except that we have to take
lower order homotopies into account. Let x ∈ K ′k. If ∗ is not contained in any of the blobs of x, then
define hk(x) = 0. Otherwise, let B be the outermost blob of x containing ∗. We can decompose
x = x′ • p, where x′ is supported on B and p is supported away from B. So x′ ∈ G′l for some l ≤ k.
Choose x′′ ∈ G′′l such that ∂x′′ = ∂(x′−hl−1∂x′). Choose y ∈ G′l+1 such that ∂y = x′−x′′−hl−1∂x′.
Define hk(x) = y • p. This completes the proof that i : K ′′∗ → K ′∗ is a homotopy equivalence.

Finally, we show that K ′′∗ is contractible with H0
∼= C. This is similar to the proof of Proposition

3.2.1, but a bit more complicated since there is no single blob which contains the support of all blob
diagrams in K ′′∗ . Let x be a cycle of degree greater than zero in K ′′∗ . The union of the supports
of the diagrams in x does not contain ∗, so there exists a ball B ⊂ S1 containing the union of the
supports and not containing ∗. Adding B as an outermost blob to each summand of x gives a chain
y with ∂y = x. Thus Hi(K

′′
∗ ) ∼= 0 for i > 0 and K ′′∗ is contractible.

To see that H0(K
′′
∗ ) ∼= C, consider the map p : K ′′0 → C which sends a 0-blob diagram to the

product of its labeled points. p is clearly surjective. It’s also easy to see that p(∂K ′′1 ) = 0. Finally,
if p(y) = 0 then there exists a blob B ⊂ S1 which contains all of the labeled points (other than *)
of all of the summands of y. This allows us to construct x ∈ K ′′1 such that ∂x = y. (The label of B
is the restriction of y to B.) It follows that H0(K

′′
∗ ) ∼= C.

4.3 An explicit chain map in low degrees

For purposes of illustration, we describe an explicit chain map Hoch∗(M)→ K∗(M) between the
Hochschild complex and the blob complex (with bimodule point) for degree ≤ 2. This map can
be completed to a homotopy equivalence, though we will not prove that here. There are of course
many such maps; what we describe here is one of the simpler possibilities.

Recall that in low degrees Hoch∗(M) is

· · · ∂→M ⊗ C ⊗ C ∂→M ⊗ C ∂→M

with

∂(m⊗ a) = ma− am
∂(m⊗ a⊗ b) = ma⊗ b−m⊗ ab+ bm⊗ a.

In degree 0, we send m ∈M to the 0-blob diagram ; the base point in S1 is labeled by m and

there are no other labeled points. In degree 1, we send m⊗ a to the sum of two 1-blob diagrams as
shown in Figure 8.
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u1 = − u2 = −

Figure 8: The image of m⊗ a in the blob complex.

In degree 2, we send m⊗ a⊗ b to the sum of 24 (= 6 · 4) 2-blob diagrams as shown in Figures 9
and 10. In Figure 10 the 1- and 2-blob diagrams are indicated only by their support. We leave it
to the reader to determine the labels of the 1-blob diagrams. Each 2-cell in the figure is labeled
by a ball V in S1 which contains the support of all 1-blob diagrams in its boundary. Such a 2-cell
corresponds to a sum of the 2-blob diagrams obtained by adding V as an outer (non-twig) blob
to each of the 1-blob diagrams in the boundary of the 2-cell. Figure 11 shows this explicitly for
the 2-cell labeled A in Figure 10. Note that the (blob complex) boundary of this sum of 2-blob
diagrams is precisely the sum of the 1-blob diagrams corresponding to the boundary of the 2-cell.
(Compare with the proof of 3.2.1.)
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Figure 9: The 0-chains in the image of m⊗ a⊗ b.

Figure 10: The 1- and 2-chains in the image of m⊗ a⊗ b. Only the supports of the blobs are shown,
but see Figure 11 for an example of a 2-cell label.
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A = + + +

v1 = − v2 = −

v3 = − v4 = −

Figure 11: One of the 2-cells from Figure 10.
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5 Action of C∗(Homeo(X))

In this section we extend the action of homeomorphisms on B∗(X) to an action of families of
homeomorphisms. That is, for each pair of homeomorphic manifolds X and Y we define a chain
map

eXY : CH∗(X,Y )⊗ B∗(X)→ B∗(Y ),

where CH∗(X,Y ) = C∗(Homeo(X,Y )), the singular chains on the space of homeomorphisms from
X to Y . (If X and Y have non-empty boundary, these families of homeomorphisms are required to
restrict to a fixed homeomorphism on the boundaries.) These actions (for various X and Y ) are
compatible with gluing. See §5.2 for a more precise statement.

The most convenient way to prove that maps eXY with the desired properties exist is to introduce
a homotopy equivalent alternate version of the blob complex, BT ∗(X), which is more amenable to
this sort of action. Recall from Remark 3.1.7 that blob diagrams have the structure of a cone-product
set. Blob diagrams can also be equipped with a natural topology, which converts this cone-product
set into a cone-product space. Taking singular chains of this space we get BT ∗(X). The details are
in §5.1. We also prove a useful result (Lemma 5.1.1) which says that we can assume that blobs are
small with respect to any fixed open cover.

5.1 Alternative definitions of the blob complex

In this subsection we define a subcomplex (small blobs) and supercomplex (families of blobs) of the
blob complex, and show that they are both homotopy equivalent to B∗(X).

If b is a blob diagram in B∗(X), define the support of b, denoted supp(b) or |b|, to be the union
of the blobs of b. More generally, we say that a chain a ∈ Bk(X) is supported on S if a = a′ • r,
where a′ ∈ Bk(S) and r ∈ B0(X \ S).

Similarly, if f : P × X → X is a family of homeomorphisms and Y ⊂ X, we say that f is
supported on Y if f(p, x) = f(p′, x) for all x ∈ X \ Y and all p, p′ ∈ P . We will sometimes abuse
language and talk about “the” support of f , again denoted supp(f) or |f |, to mean some particular
choice of Y such that f is supported on Y .

If f : M ∪ (Y × I) → M is a collaring homeomorphism (cf. end of §2.1), we say that f is
supported on S ⊂M if f(x) = x for all x ∈M \ S.

Fix U , an open cover of X. Define the “small blob complex” BU∗ (X) to be the subcomplex of
B∗(X) of all blob diagrams in which every blob is contained in some open set of U , and moreover
each field labeling a region cut out by the blobs is splittable into fields on smaller regions, each of
which is contained in some open set of U .

Lemma 5.1.1 (Small blobs). The inclusion i : BU∗ (X) ↪→ B∗(X) is a homotopy equivalence.

Proof. Since both complexes are free, it suffices to show that the inclusion induces an isomorphism
of homotopy groups. To show that it suffices to show that for any finitely generated pair (C∗, D∗),
with D∗ a subcomplex of C∗ such that

(C∗, D∗) ⊂ (B∗(X),BU∗ (X))

we can find a homotopy h : C∗ → B∗(X) such that h(D∗) ⊂ BU∗ (X) and

h∂(x) + ∂h(x) + x ∈ BU∗ (X)
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for all x ∈ C∗.
For simplicity we will assume that all fields are splittable into small pieces, so that BU0 (X) =

B0(X). (This is true for all of the examples presented in this paper.) Accordingly, we define h0 = 0.
Next we define h1. Let b ∈ C1 be a 1-blob diagram. Let B be the blob of b. We will construct a

1-chain s(b) ∈ BU1 (X) such that ∂(s(b)) = ∂b and the support of s(b) is contained in B. (If B is
not embedded in X, then we implicitly work in some stage of a decomposition of X where B is
embedded. See Definition 3.1.4 and preceding discussion.) It then follows from Corollary 3.2.2 that
we can choose h1(b) ∈ B2(X) such that ∂(h1(b)) = s(b)− b.

Roughly speaking, s(b) consists of a series of 1-blob diagrams implementing a series of small
collar maps, plus a shrunken version of b. The composition of all the collar maps shrinks B to a
ball which is small with respect to U .

Let V1 be an auxiliary open cover of X, subordinate to U and fine enough that a condition
stated later in the proof is satisfied. Let b = (B, u, r), with u =

∑
ai the label of B, and ai ∈ B0(B).

Choose a sequence of collar maps f̄j : B ∪ collar→ B satisfying conditions specified at the end of
this paragraph. Let fj : B → B be the restriction of f̄j to B; fj maps B homeomorphically to a
slightly smaller submanifold of B. Let gj = f1 ◦ f2 ◦ · · · ◦ fj . Let g be the last of the gj ’s. Choose
the sequence f̄j so that g(B) is contained is an open set of V1 and gj−1(|fj |) is also contained is an
open set of V1.

There are 1-blob diagrams cij ∈ B1(B) such that cij is compatible with V1 (more specifically,
|cij | = gj−1(B)) and ∂cij = gj−1(ai)− gj(ai). Define

s(b) =
∑
i,j

cij + g(b)

and choose h1(b) ∈ B2(X) such that

∂(h1(b)) = s(b)− b.

Next we define h2. Let b ∈ C2 be a 2-blob diagram. Let B = |b|, either a ball or a union of
two balls. By possibly working in a decomposition of X, we may assume that the ball(s) of B are
disjointly embedded. We will construct a 2-chain s(b) ∈ BU2 (X) such that

∂(s(b)) = ∂(h1(∂b) + b) = s(∂b)

and the support of s(b) is contained in B. It then follows from Corollary 3.2.2 that we can choose
h2(b) ∈ B2(X) such that ∂(h2(b)) = s(b)− b− h1(∂b).

Similarly to the construction of h1 above, s(b) consists of a series of 2-blob diagrams implementing
a series of small collar maps, plus a shrunken version of b. The composition of all the collar maps
shrinks B to a sufficiently small disjoint union of balls.

Let V2 be an auxiliary open cover of X, subordinate to U and fine enough that a condition
stated later in the proof is satisfied. As before, choose a sequence of collar maps fj such that
each has support contained in an open set of V1 and the composition of the corresponding collar
homeomorphisms yields an embedding g : B → B such that g(B) is contained in an open set of V1.
Let gj : B → B be the embedding at the j-th stage.

Fix j. We will construct a 2-chain dj such that ∂dj = gj−1(s(∂b))− gj(s(∂b)). Let s(∂b) =
∑
ek,

and let {pm} be the 0-blob diagrams appearing in the boundaries of the ek. As in the construction
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of h1, we can choose 1-blob diagrams qm such that ∂qm = gj−1(pm)− gj(pm) and |qm| is contained
in an open set of V1. If x is a sum of pm’s, we denote the corresponding sum of qm’s by q(x).

Now consider, for each k, gj−1(ek)− q(∂ek). This is a 1-chain whose boundary is gj(∂ek). The
support of ek is gj−1(V ) for some V ∈ V1, and the support of q(∂ek) is contained in a union V ′ of
finitely many open sets of V1, all of which contain the support of fj . We now reveal the mysterious
condition (mentioned above) which V1 satisfies: the union of gj−1(V ) and V ′, for all of the finitely
many instances arising in the construction of h2, lies inside a disjoint union of balls U such that
each individual ball lies in an open set of V2. (In this case there are either one or two balls in
the disjoint union.) For any fixed open cover V2 this condition can be satisfied by choosing V1 to
be a sufficiently fine cover. It follows from Corollary 3.2.2 that we can choose xk ∈ B2(X) with

∂xk = gj−1(ek)− gj(ek)− q(∂ek) and with supp(xk) = U . We can now take dj
def
=
∑
xk. It is clear

that ∂dj =
∑

(gj−1(ek)− gj(ek)) = gj−1(s(∂b))− gj(s(∂b)), as desired.
We now define

s(b) =
∑

dj + g(b),

where g is the composition of all the fj ’s. It is easy to verify that s(b) ∈ BU2 , supp(s(b)) = supp(b), and
∂(s(b)) = s(∂b). If follows that we can choose h2(b) ∈ B2(X) such that ∂(h2(b)) = s(b)− b− h1(∂b).
This completes the definition of h2.

The general case hl is similar. When constructing the analogue of xk above, we will need to find
a disjoint union of balls U which contains finitely many open sets from Vl−1 such that each ball is
contained in some open set of Vl. For sufficiently fine Vl−1 this will be possible. Since C∗ is finite,
the process terminates after finitely many, say r, steps. We take Vr = U .

Next we define the cone-product space version of the blob complex, BT ∗(X). First we must
specify a topology on the set of k-blob diagrams, BDk. We give BDk the finest topology such that

• For any b ∈ BDk the action map Homeo(X)→ BDk, f 7→ f(b) is continuous.

• The gluing maps BDk(M)→ BDk(Mgl) are continuous.

• For balls B, the map U(B) → BD1(B), u 7→ (B, u, ∅), is continuous, where U(B) ⊂ B0(B)
inherits its topology from B0(B) and the topology on B0(B) comes from the generating set
BD0(B).

We can summarize the above by saying that in the typical continuous family P → BDk(X),
p 7→ (Bi(p), ui(p), r(p)), Bi(p) and r(p) are induced by a map P → Homeo(X), with the twig blob
labels ui(p) varying independently. We note that while we’ve decided not to allow the blobs Bi(p)
to vary independently of the field r(p), if we did allow this it would not affect the truth of the claims
we make below. In particular, such a definition of BT ∗(X) would result in a homotopy equivalent
complex.

Next we define BT ∗(X) to be the total complex of the double complex (denoted BT ∗∗) whose
(i, j) entry is Cj(BDi), the singular j-chains on the space of i-blob diagrams. The vertical boundary
of the double complex, denoted ∂t, is the singular boundary, and the horizontal boundary, denoted
∂b, is the blob boundary. Following the usual sign convention, we have ∂ = ∂b + (−1)i∂t.

We will regard B∗(X) as the subcomplex BT ∗0(X) ⊂ BT ∗∗(X). The main result of this
subsection is
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Lemma 5.1.2. The inclusion B∗(X) ⊂ BT ∗(X) is a homotopy equivalence

Before giving the proof we need a few preliminary results.

Lemma 5.1.3. BT ∗(Bn) is contractible (acyclic in positive degrees).

Proof. We will construct a contracting homotopy h : BT ∗(Bn)→ BT ∗+1(B
n).

We will assume a splitting s : H0(BT ∗(Bn))→ BT 0(B
n) of the quotient map q : BT 0(B

n)→
H0(BT ∗(Bn)). Let ρ = s ◦ q.

For x ∈ BT ij with i ≥ 1 define
h(x) = e(x),

where
e : BT ij → BT i+1,j

adds an outermost blob, equal to all of Bn, to the j-parameter family of blob diagrams. Note that
for fixed i, e is a chain map, i.e. ∂te = e∂t.

A generator y ∈ BT 0j is a map y : P → BD0, where P is some j-dimensional polyhedron. We
define r(y) ∈ BT 0j to be the constant function ρ ◦ y : P → BD0. Let c(r(y)) ∈ BT 0,j+1 be the
constant map from the cone of P to BD0 taking the same value (namely r(y(p)), for any p ∈ P ).
Let e(y − r(y)) ∈ BT 1j denote the j-parameter family of 1-blob diagrams whose value at p ∈ P is
the blob Bn with label y(p)− r(y(p)). Now define, for y ∈ BT 0j ,

h(y) = e(y − r(y))− c(r(y)).

We must now verify that h does the job it was intended to do. For x ∈ BT ij with i ≥ 2 we have

∂h(x) + h(∂x) = ∂(e(x)) + e(∂x)

= ∂b(e(x)) + (−1)i+1∂t(e(x)) + e(∂bx) + (−1)ie(∂tx)

= ∂b(e(x)) + e(∂bx) (since ∂t(e(x)) = e(∂tx))

= x.

For x ∈ BT 1j we have

∂h(x) + h(∂x) = ∂b(e(x)) + ∂t(e(x)) + e(∂bx− r(∂bx))− c(r(∂bx))− e(∂tx)

= ∂b(e(x)) + e(∂bx) (since r(∂bx) = 0)

= x.

For x ∈ BT 0j with j ≥ 1 we have

∂h(x) + h(∂x) = ∂b(e(x− r(x)))− ∂t(e(x− r(x))) + ∂t(c(r(x))) + e(∂tx− r(∂tx))− c(r(∂tx))

= x− r(x) + ∂t(c(r(x)))− c(r(∂tx))

= x− r(x) + r(x)

= x.

Here we have used the fact that ∂b(c(r(x))) = 0 since c(r(x)) is a 0-blob diagram, as well as that
∂t(e(r(x))) = e(r(∂tx)) and ∂t(c(r(x)))− c(r(∂tx)) = r(x).
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For x ∈ BT 00 we have

∂h(x) + h(∂x) = ∂b(e(x− r(x))) + ∂t(c(r(x)))

= x− r(x) + r(x)− r(x)

= x− r(x).

Lemma 5.1.4. For manifolds X and Y , we have BT ∗(X t Y ) ' BT ∗(X)⊗ BT ∗(Y ).

Proof. This follows from the Eilenberg-Zilber theorem and the fact that

BDk(X t Y ) ∼=
∐
i+j=k

BDi(X)×BDj(Y ).

For S ⊂ X, we say that a ∈ BT k(X) is supported on S if there exists a′ ∈ BT k(S) and
r ∈ BT 0(X \ S) such that a = a′ • r.

Let U be an open cover of X. Let BT U∗ (X) ⊂ BT ∗(X) be the subcomplex generated by
a ∈ BT ∗(X) such that there is a decomposition X = ∪iDi such that each Di is a ball contained in
some open set of U and a is splittable along this decomposition. In other words, a can be obtained
by gluing together pieces, each of which is small with respect to U .

Lemma 5.1.5. For any open cover U of X, the inclusion BT U∗ (X) ⊂ BT ∗(X) is a homotopy
equivalence.

Proof. This follows from a combination of Lemma B.0.5 and the techniques of the proof of Lemma
5.1.1.

It suffices to show that we can deform a finite subcomplex C∗ of BT ∗(X) into BT U∗ (X) (relative
to any designated subcomplex of C∗ already in BT U∗ (X)). The first step is to replace families of
general blob diagrams with families that are small with respect to U . This is done as in the proof of
Lemma 5.1.1; the technique of the proof works in families. Each such family is homotopic to a sum
families which can be a “lifted” to Homeo(X). That is, f : P → BDk has the form f(p) = g(p)(b)
for some g : P → Homeo(X) and b ∈ BDk. (We are ignoring a complication related to twig blob
labels, which might vary independently of g, but this complication does not affect the conclusion we
draw here.) We now apply Lemma B.0.5 to get families which are supported on balls Di contained
in open sets of U .

Proof of Lemma 5.1.2. Armed with the above lemmas, we can now proceed similarly to the proof
of Lemma 5.1.1.

It suffices to show that for any finitely generated pair of subcomplexes (C∗, D∗) ⊂ (BT ∗(X),B∗(X))
we can find a homotopy h : C∗ → BT ∗+1(X) such that h(D∗) ⊂ B∗+1(X) and x+ h∂(x) + ∂h(x) ∈
B∗(X) for all x ∈ C∗.

By Lemma 5.1.5, we may assume that C∗ ⊂ BT U∗ (X) for some cover U of our choosing. We
choose U fine enough so that each generator of C∗ is supported on a disjoint union of balls. (This is
possible since the original C∗ was finite and therefore had bounded dimension.)

Since B0(X) = BT 0(X), we can take h0 = 0.
Let b ∈ C1 be a generator. Since b is supported in a disjoint union of balls, we can find s(b) ∈ B1

with ∂(s(b)) = ∂b (by Corollary 3.2.2), and also h1(b) ∈ BT 2(X) such that ∂(h1(b)) = s(b)− b (by
Lemmas 5.1.3 and 5.1.4).

37



Now let b be a generator of C2. If U is fine enough, there is a disjoint union of balls V on
which b + h1(∂b) is supported. Since ∂(b + h1(∂b)) = s(∂b) ∈ B2(X), we can find s(b) ∈ B2(X)
with ∂(s(b)) = ∂(b + h1(∂b)) (by Corollary 3.2.2). By Lemmas 5.1.3 and 5.1.4, we can now find
h2(b) ∈ BT 3(X), also supported on V , such that ∂(h2(b)) = s(b)− b− h1(∂b)

The general case, hk, is similar.

The proof of Lemma 5.1.2 constructs a homotopy inverse to the inclusion B∗(X) ⊂ BT ∗(X).
One might ask for more: a contractible set of possible homotopy inverses, or at least an m-connected
set for arbitrarily large m. The latter can be achieved with finer control over the various choices of
disjoint unions of balls in the above proofs, but we will not pursue this here.

5.2 Action of C∗(Homeo(X))

Let CH∗(X,Y ) denote C∗(Homeo(X → Y )), the singular chain complex of the space of homeomor-
phisms between the n-manifolds X and Y (any given singular chain extends a fixed homeomorphism

∂X → ∂Y ). We also will use the abbreviated notation CH∗(X)
def
= CH∗(X,X). (For convenience,

we will permit the singular cells generating CH∗(X,Y ) to be more general than simplices — they
can be based on any cone-product polyhedron (see Remark 3.1.7).)

Theorem 5.2.1. For n-manifolds X and Y there is a chain map

eXY : CH∗(X,Y )⊗ B∗(X)→ B∗(Y ),

well-defined up to homotopy, such that

1. on CH0(X,Y )⊗B∗(X) it agrees with the obvious action of Homeo(X,Y ) on B∗(X) described
in Property 1.3.1, and

2. for any compatible splittings X → Xgl and Y → Ygl, the following diagram commutes up to
homotopy

CH∗(X,Y )⊗ B∗(X) eXY
//

gl⊗ gl
��

B∗(Y )

gl
��

CH∗(Xgl, Ygl)⊗ B∗(Xgl) eXglYgl

// B∗(Ygl)

Proof. In light of Lemma 5.1.2, it suffices to prove the theorem with B∗ replaced by BT ∗. In fact,
for BT ∗ we get a sharper result: we can omit the “up to homotopy” qualifiers.

Let f ∈ CHk(X,Y ), f : P k → Homeo(X → Y ) and a ∈ BT ij(X), a : Qj → BDi(X). Define
eXY (f ⊗ a) ∈ BT i,j+k(Y ) by

eXY (f ⊗ a) : P ×Q→ BDi(Y )

(p, q) 7→ f(p)(a(q)).

It is clear that this agrees with the previously defined CH0(X,Y ) action on BT ∗, and it is also easy
to see that the diagram in item 2 of the statement of the theorem commutes on the nose.
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Theorem 5.2.2. The CH∗(X,Y ) actions defined above are associative. That is, the following
diagram commutes up to homotopy:

CH∗(Y,Z)⊗ B∗(Y )
eY Z

((QQQQQQQQQQQQQ

CH∗(X,Y )⊗ CH∗(Y, Z)⊗ B∗(X)

eXY ⊗1
33gggggggggggggggggggg

µ⊗1
++WWWWWWWWWWWWWWWWWWWW

B∗(Z)

CH∗(X,Z)⊗ B∗(X)

eXZ

66mmmmmmmmmmmmm

Here µ : CH∗(X,Y )⊗ CH∗(Y,Z)→ CH∗(X,Z) is the map induced by composition of homeomor-
phisms.

Proof. The corresponding diagram for BT ∗ commutes on the nose.

6 n-categories and their modules

6.1 Definition of n-categories

Before proceeding, we need more appropriate definitions of n-categories, A∞ n-categories, as well as
modules for these, and tensor products of these modules. (As is the case throughout this paper, by
“n-category” we mean some notion of a “weak” n-category with “strong duality”.)

The definitions presented below tie the categories more closely to the topology and avoid combi-
natorial questions about, for example, the minimal sufficient collections of generalized associativity
axioms; we prefer maximal sets of axioms to minimal sets. It is easy to show that examples
of topological origin (e.g. categories whose morphisms are maps into spaces or decorated balls),
satisfy our axioms. For examples of a more purely algebraic origin, one would typically need the
combinatorial results that we have avoided here.

See §1.7 for a discussion of n-category terminology.

There are many existing definitions of n-categories, with various intended uses. In any such
definition, there are sets of k-morphisms for each 0 ≤ k ≤ n. Generally, these sets are indexed
by instances of a certain typical shape. Some n-category definitions model k-morphisms on the
standard bihedron (interval, bigon, and so on). Other definitions have a separate set of 1-morphisms
for each interval [0, l] ⊂ R, a separate set of 2-morphisms for each rectangle [0, l1] × [0, l2] ⊂ R2,
and so on. (This allows for strict associativity; see [Til08, Bro09].) Still other definitions (see, for
example, [Lei04]) model the k-morphisms on more complicated combinatorial polyhedra.

For our definition, we will allow our k-morphisms to have any shape, so long as it is homeomorphic
to the standard k-ball. Thus we associate a set of k-morphisms Ck(X) to any k-manifold X
homeomorphic to the standard k-ball. By “a k-ball” we mean any k-manifold which is homeomorphic
to the standard k-ball. We do not assume that it is equipped with a preferred homeomorphism to
the standard k-ball, and the same applies to “a k-sphere” below.

The axioms for an n-category are spread throughout this section. Collecting these together,
an n-category is a gadget satisfying Axioms 6.1.1, 6.1.3, 6.1.5, 6.1.6, 6.1.8 and 6.1.10; for an A∞
n-category, we replace Axiom 6.1.10 with Axiom 6.1.11.
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Given a homeomorphism f : X → Y between k-balls (not necessarily fixed on the boundary), we
want a corresponding bijection of sets f : C(X)→ C(Y ). (This will imply “strong duality”, among
other things.) Putting these together, we have

Axiom 6.1.1 (Morphisms). For each 0 ≤ k ≤ n, we have a functor Ck from the category of k-balls
and homeomorphisms to the category of sets and bijections.

(Note: We often omit the subscript k.)
We are being deliberately vague about what flavor of k-balls we are considering. They could be

unoriented or oriented or Spin or Pin±. They could be topological or PL or smooth. (If smooth,
“homeomorphism” should be read “diffeomorphism”, and we would need to be fussier about corners
and boundaries.) For each flavor of manifold there is a corresponding flavor of n-category. For
simplicity, we will concentrate on the case of PL unoriented manifolds.

An ambitious reader may want to keep in mind two other classes of balls. The first is balls
equipped with a map to some other space Y (c.f. [ST04]). This will be used below (see the end of
§7.1) to describe the blob complex of a fiber bundle with base space Y . The second is balls equipped
with a section of the tangent bundle, or the frame bundle (i.e. framed balls), or more generally some
partial flag bundle associated to the tangent bundle. These can be used to define categories with
less than the “strong” duality we assume here, though we will not develop that idea fully in this
paper.

Next we consider domains and ranges of morphisms (or, as we prefer to say, boundaries of
morphisms). The 0-sphere is unusual among spheres in that it is disconnected. Correspondingly,
for 1-morphisms it makes sense to distinguish between domain and range. (Actually, this is only
true in the oriented case, with 1-morphisms parameterized by oriented 1-balls.) For k > 1 and in
the presence of strong duality the division into domain and range makes less sense. For example,

in a pivotal tensor category, there are natural isomorphisms Hom (A,B ⊗ C)
∼=−→ Hom (B∗ ⊗A,C),

etc. (sometimes called “Frobenius reciprocity”), which canonically identify all the morphism spaces
which have the same boundary. We prefer not to make the distinction in the first place.

Instead, we will combine the domain and range into a single entity which we call the boundary
of a morphism. Morphisms are modeled on balls, so their boundaries are modeled on spheres. In
other words, we need to extend the functors Ck−1 from balls to spheres, for 1 ≤ k ≤ n. At first it
might seem that we need another axiom for this, but in fact once we have all the axioms in this
subsection for 0 through k − 1 we can use a colimit construction, as described in §6.3 below, to
extend Ck−1 to spheres (and any other manifolds):

Lemma 6.1.2. For each 1 ≤ k ≤ n, we have a functor C−→k−1 from the category of k−1-spheres and
homeomorphisms to the category of sets and bijections.

We postpone the proof of this result until after we’ve actually given all the axioms. Note that
defining this functor for some k only requires the data described in Axiom 6.1.1 at level k, along
with the data described in the other axioms at lower levels.

Axiom 6.1.3 (Boundaries). For each k-ball X, we have a map of sets ∂ : Ck(X) → C−→k−1(∂X).
These maps, for various X, comprise a natural transformation of functors.

Note that the first “∂” above is part of the data for the category, while the second is the ordinary
boundary of manifolds. Given c ∈ C−→(∂(X)), we will write C(X; c) for ∂−1(c), those morphisms with
specified boundary c.
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Most of the examples of n-categories we are interested in are enriched in the following sense.
The various sets of n-morphisms C(X; c), for all n-balls X and all c ∈ C−→(∂X), have the structure of

an object in some auxiliary symmetric monoidal category with sufficient limits and colimits (e.g.
vector spaces, or modules over some ring, or chain complexes), and all the structure maps of the
n-category should be compatible with the auxiliary category structure. Note that this auxiliary
structure is only in dimension n; if dim(Y ) < n then C(Y ; c) is just a plain set.

In order to simplify the exposition we have concentrated on the case of unoriented PL manifolds
and avoided the question of what exactly we mean by the boundary of a manifold with extra
structure, such as an oriented manifold. In general, all manifolds of dimension less than n should
be equipped with the germ of a thickening to dimension n, and this germ should carry whatever
structure we have on n-manifolds. In addition, lower dimensional manifolds should be equipped
with a framing of their normal bundle in the thickening; the framing keeps track of which side
(iterated) bounded manifolds lie on. For example, the boundary of an oriented n-ball should be
an n−1-sphere equipped with an orientation of its once stabilized tangent bundle and a choice of
direction in this bundle indicating which side the n-ball lies on.

We have just argued that the boundary of a morphism has no preferred splitting into domain
and range, but the converse meets with our approval. That is, given compatible domain and range,
we should be able to combine them into the full boundary of a morphism. The following lemma will
follow from the colimit construction used to define C−→k−1 on spheres.

Lemma 6.1.4 (Boundary from domain and range). Let S = B1 ∪E B2, where S is a k−1-sphere
(1 ≤ k ≤ n), Bi is a k−1-ball, and E = B1∩B2 is a k−2-sphere (Figure 12). Let C(B1)× C−→(E) C(B2)

denote the fibered product of the two maps ∂ : C(Bi)→ C−→(E). Then we have an injective map

glE : C(B1)× C−→(E) C(B2) ↪→ C−→(S)

which is natural with respect to the actions of homeomorphisms. (When k = 1 we stipulate that
C−→(E) is a point, so that the above fibered product becomes a normal product.)

E

E

B1 B2

Figure 12: Combining two balls to get a full boundary.

Note that we insist on injectivity above. The lemma follows from Definition 6.3.3 and Lemma
6.3.5.

Let C−→(S)E denote the image of glE . We will refer to elements of C−→(S)E as “splittable along E”
or “transverse to E”.

If X is a k-ball and E ⊂ ∂X splits ∂X into two k−1-balls B1 and B2 as above, then we define
C(X)E = ∂−1( C−→(∂X)E).

41



We will call the projection C−→(S)E → C(Bi) a restriction map and write resBi(a) (or simply

res(a) when there is no ambiguity), for a ∈ C−→(S)E . More generally, we also include under the rubric
“restriction map” the boundary maps of Axiom 6.1.3 above, another class of maps introduced after
Axiom 6.1.6 below, as well as any composition of restriction maps. In particular, we have restriction
maps C(X)E → C(Bi) (i = 1, 2, notation from previous paragraph). These restriction maps can be
thought of as domain and range maps, relative to the choice of splitting ∂X = B1 ∪E B2.

Next we consider composition of morphisms. For n-categories which lack strong duality, one
usually considers k different types of composition of k-morphisms, each associated to a different
direction. (For example, vertical and horizontal composition of 2-morphisms.) In the presence of
strong duality, these k distinct compositions are subsumed into one general type of composition
which can be in any “direction”.

Axiom 6.1.5 (Composition). Let B = B1 ∪Y B2, where B, B1 and B2 are k-balls (0 ≤ k ≤ n) and
Y = B1 ∩B2 is a k−1-ball (Figure 13). Let E = ∂Y , which is a k−2-sphere. Note that each of B,
B1 and B2 has its boundary split into two k−1-balls by E. We have restriction (domain or range)
maps C(Bi)E → C(Y ). Let C(B1)E ×C(Y ) C(B2)E denote the fibered product of these two maps. We
have a map

glY : C(B1)E ×C(Y ) C(B2)E → C(B)E

which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
to the intersection of the boundaries of B and Bi. If k < n, or if k = n and we are in the A∞ case,
we require that glY is injective. (For k = n in the ordinary (non-A∞) case, see below.)

E

E

B1 B2

Y

Figure 13: From two balls to one ball.

Axiom 6.1.6 (Strict associativity). The composition (gluing) maps above are strictly associative.
Given any splitting of a ball B into smaller balls⊔

Bi → B,

any sequence of gluings (in the sense of Definition 3.1.3, where all the intermediate steps are also
disjoint unions of balls) yields the same result.

We’ll use the notation a • b for the glued together field glY (a, b). In the other direction, we will
call the projection from C(B)E to C(Bi)E a restriction map (one of many types of map so called)
and write resBi(a) for a ∈ C(B)E .

42



Figure 14: An example of strict associativity.

We will write C(B)Y for the image of glY in C(B). We will call elements of C(B)Y morphisms
which are “splittable along Y ” or “transverse to Y ”. We have C(B)Y ⊂ C(B)E ⊂ C(B).

More generally, let α be a splitting of X into smaller balls. Let C(X)α ⊂ C(X) denote the
image of the iterated gluing maps from the smaller balls to X. We say that elements of C(X)α
are morphisms which are “splittable along α”. In situations where the splitting is notationally
anonymous, we will write C(X)t for the morphisms which are splittable along (a.k.a. transverse

to) the unnamed splitting. If β is a ball decomposition of ∂X, we define C(X)β
def
= ∂−1( C−→(∂X)β);

this can also be denoted C(X)t if the context contains an anonymous decomposition of ∂X and no
competing splitting of X.

The above two composition axioms are equivalent to the following one, which we state in slightly
vague form.

Multi-composition: Given any splitting B1 t · · · tBm → B of a k-ball into small k-balls, there is
a map from an appropriate subset (like a fibered product) of C(B1)t × · · · × C(Bm)t to C(B)t, and
these various m-fold composition maps satisfy an operad-type strict associativity condition (Figure
15).

The next axiom is related to identity morphisms, though that might not be immediately obvious.

Axiom 6.1.7 (Product (identity) morphisms, preliminary version). For each k-ball X and m-ball
D, with k +m ≤ n, there is a map C(X)→ C(X ×D), usually denoted a 7→ a×D for a ∈ C(X).
These maps must satisfy the following conditions.

1. If f : X → X ′ and f̃ : X ×D → X ′ ×D′ are homeomorphisms such that the diagram

X ×D f̃
//

π

��

X ′ ×D′

π

��

X
f

// X ′
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Figure 15: Operad composition and associativity

commutes, then we have
f̃(a×D) = f(a)×D′.

2. Product morphisms are compatible with gluing (composition) in both factors:

(a′ ×D) • (a′′ ×D) = (a′ • a′′)×D

and
(a×D′) • (a×D′′) = a× (D′ •D′′).

3. Product morphisms are associative:

(a×D)×D′ = a× (D ×D′).

(Here we are implicitly using functoriality and the obvious homeomorphism (X ×D)×D′ →
X × (D ×D′).)

4. Product morphisms are compatible with restriction:

resX×E(a×D) = a× E

for E ⊂ ∂D and a ∈ C(X).

We will need to strengthen the above preliminary version of the axiom to allow for products
which are “pinched” in various ways along their boundary. (See Figure 16.) (The need for a
strengthened version will become apparent in Appendix C where we construct a traditional category
from a disk-like category.) Define a pinched product to be a map

π : E → X

such that E is a k+m-ball, X is a k-ball (m ≥ 1), and π is locally modeled on a standard iterated
degeneracy map

d : ∆k+m → ∆k.

(We thank Kevin Costello for suggesting this approach.)
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Figure 16: Examples of pinched products

Figure 17: Five examples of unions of pinched products

Note that for each interior point x ∈ X, π−1(x) is an m-ball, and for each boundary point
x ∈ ∂X, π−1(x) is a ball of dimension l ≤ m, with l depending on x. It is easy to see that a
composition of pinched products is again a pinched product. A sub pinched product is a sub-m-ball
E′ ⊂ E such that the restriction π : E′ → π(E′) is again a pinched product. A union of pinched
products is a decomposition E = ∪iEi such that each Ei ⊂ E is a sub pinched product. (See Figure
17.)

The product axiom will give a map π∗ : C(X) → C(E) for each pinched product π : E → X.
Morphisms in the image of π∗ will be called product morphisms. Before stating the axiom, we
illustrate it in our two motivating examples of n-categories. In the case where C(X) = {f : X → T},
we define π∗(f) = f ◦ π. In the case where C(X) is the set of all labeled embedded cell complexes K
in X, define π∗(K) = π−1(K), with each codimension i cell π−1(c) labeled by the same (traditional)
i-morphism as the corresponding codimension i cell c.

Axiom 6.1.8 (Product (identity) morphisms). For each pinched product π : E → X, with X a
k-ball and E a k+m-ball (m ≥ 1), there is a map π∗ : C(X)→ C(E). These maps must satisfy the
following conditions.

1. If π : E → X and π′ : E′ → X ′ are pinched products, and if f : X → X ′ and f̃ : E → E′ are
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maps such that the diagram

E
f̃

//

π

��

E′

π′

��

X
f

// X ′

commutes, then we have
π′∗ ◦ f = f̃ ◦ π∗.

2. Product morphisms are compatible with gluing (composition). Let π : E → X, π1 : E1 → X1,
and π2 : E2 → X2 be pinched products with E = E1 ∪E2. Let a ∈ C(X), and let ai denote the
restriction of a to Xi ⊂ X. Then

π∗(a) = π∗1(a1) • π∗2(a2).

3. Product morphisms are associative. If π : E → X and ρ : D → E are pinched products then

ρ∗ ◦ π∗ = (π ◦ ρ)∗.

4. Product morphisms are compatible with restriction. If we have a commutative diagram

D
� � //

ρ

��

E

π

��

Y
� � // X

such that ρ and π are pinched products, then

resD ◦π∗ = ρ∗ ◦ resY .

All of the axioms listed above hold for both ordinary n-categories and A∞ n-categories. The
last axiom (below), concerning actions of homeomorphisms in the top dimension n, distinguishes
the two cases.

We start with the ordinary n-category case.

Axiom 6.1.9 ([preliminary] Isotopy invariance in dimension n). Let X be an n-ball and f : X → X
be a homeomorphism which restricts to the identity on ∂X and is isotopic (rel boundary) to the
identity. Then f acts trivially on C(X); that is f(a) = a for all a ∈ C(X).

This axiom needs to be strengthened to force product morphisms to act as the identity. Let
X be an n-ball and Y ⊂ ∂X be an n−1-ball. Let J be a 1-ball (interval). We have a collaring
homeomorphism sY,J : X ∪Y (Y × J)→ X. (Here we use Y × J with boundary entirely pinched.)
We define a map

ψY,J : C(X) → C(X)

a 7→ sY,J(a ∪ ((a|Y )× J)).

(See Figure 18.) We call a map of this form a collar map. It can be thought of as the action
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a

a× J

C(X)
glue

// C(X ∪ collar)
homeo // C(X)

Figure 18: Extended homeomorphism.

of the inverse of a map which projects a collar neighborhood of Y onto Y , or as the limit of
homeomorphisms X → X which expand a very thin collar of Y to a larger collar. We call the
equivalence relation generated by collar maps and homeomorphisms isotopic (rel boundary) to the
identity extended isotopy.

The revised axiom is

Axiom 6.1.10 ([ordinary version] Extended isotopy invariance in dimension n.). Let X be an
n-ball and f : X → X be a homeomorphism which restricts to the identity on ∂X and isotopic (rel
boundary) to the identity. Then f acts trivially on C(X). In addition, collar maps act trivially on
C(X).

For A∞ n-categories, we replace isotopy invariance with the requirement that families of
homeomorphisms act. For the moment, assume that our n-morphisms are enriched over chain
complexes. Let Homeo∂(X) denote homeomorphisms of X which fix ∂X and C∗(Homeo∂(X))
denote the singular chains on this space.

Axiom 6.1.11 ([A∞ version] Families of homeomorphisms act in dimension n.). For each n-ball
X and each c ∈ C−→(∂X) we have a map of chain complexes

C∗(Homeo∂(X))⊗ C(X; c)→ C(X; c).

These action maps are required to be associative up to homotopy, and also compatible with composition
(gluing) in the sense that a diagram like the one in Theorem 5.2.1 commutes. On C0(Homeo∂(X))⊗
C(X; c) the action should coincide with the one coming from Axiom 6.1.1.

We should strengthen the above A∞ axiom to apply to families of collar maps. To do this we
need to explain how collar maps form a topological space. Roughly, the set of collared n−1-balls in
the boundary of an n-ball has a natural topology, and we can replace the class of all intervals J
with intervals contained in R. Having chains on the space of collar maps act gives rise to coherence
maps involving weak identities. We will not pursue this in detail here.

A potential variant on the above axiom would be to drop the “up to homotopy” and require a
strictly associative action. (In fact, the alternative construction of the blob complex described in
§5.1 gives n-categories as in Example 6.2.8 which satisfy this stronger axiom; since that construction
is only homotopy equivalent to the usual one, only the weaker axiom carries across.)

Note that if we take homology of chain complexes, we turn an A∞ n-category into a ordinary
n-category (enriched over graded groups). In a different direction, if we enrich over topological
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spaces instead of chain complexes, we get a space version of an A∞ n-category, with Homeo∂(X)
acting instead of C∗(Homeo∂(X)). Taking singular chains converts such a space type A∞ n-category
into a chain complex type A∞ n-category.

The alert reader will have already noticed that our definition of a (ordinary) n-category is
extremely similar to our definition of a system of fields. There are two differences. First, for the
n-category definition we restrict our attention to balls (and their boundaries), while for fields we
consider all manifolds. Second, in category definition we directly impose isotopy invariance in
dimension n, while in the fields definition we instead remember a subspace of local relations which
contain differences of isotopic fields. (Recall that the compensation for this complication is that we
can demand that the gluing map for fields is injective.) Thus a system of fields and local relations
(F , U) determines an n-category CF ,U simply by restricting our attention to balls and, at level n,
quotienting out by the local relations:

CF ,U (Bk) =

{
F(B) when k < n,

F(B)/U(B) when k = n.

This n-category can be thought of as the local part of the fields. Conversely, given a disk-like
n-category we can construct a system of fields via a colimit construction; see §6.3 below.

In the n-category axioms above we have intermingled data and properties for expository reasons.
Here’s a summary of the definition which segregates the data from the properties.

An n-category consists of the following data:

• functors Ck from k-balls to sets, 0 ≤ k ≤ n (Axiom 6.1.1);

• boundary natural transformations Ck → C−→k−1 ◦ ∂ (Axiom 6.1.3);

• “composition” or “gluing” maps glY : C(B1)E ×C(Y ) C(B2)E → C(B1 ∪Y B2)E (Axiom 6.1.5);

• “product” or “identity” maps π∗ : C(X)→ C(E) for each pinched product π : E → X (Axiom
6.1.8);

• if enriching in an auxiliary category, additional structure on Cn(X; c);

• in the A∞ case, an action of C∗(Homeo∂(X)), and similarly for families of collar maps (Axiom
6.1.11).

The above data must satisfy the following conditions:

• The gluing maps are compatible with actions of homeomorphisms and boundary restrictions
(Axiom 6.1.5).

• For k < n the gluing maps are injective (Axiom 6.1.5).

• The gluing maps are strictly associative (Axiom 6.1.6).

• The product maps are associative and also compatible with homeomorphism actions, gluing
and restriction (Axiom 6.1.8).

• If enriching in an auxiliary category, all of the data should be compatible with the auxiliary
category structure on Cn(X; c).

• For ordinary categories, invariance of n-morphisms under extended isotopies (Axiom 6.1.10).
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6.2 Examples of n-categories

We now describe several classes of examples of n-categories satisfying our axioms. We typically
specify only the morphisms; the rest of the data for the category (restriction maps, gluing, product
morphisms, action of homeomorphisms) is usually obvious.

Example 6.2.1 (Maps to a space). Let T be a topological space. We define π≤n(T ), the fundamental
n-category of T , as follows. For X a k-ball with k < n, define π≤n(T )(X) to be the set of all
continuous maps from X to T . For X an n-ball define π≤n(T )(X) to be continuous maps from X
to T modulo homotopies fixed on ∂X. (Note that homotopy invariance implies isotopy invariance.)
For a ∈ C(X) define the product morphism a×D ∈ C(X ×D) to be a ◦πX , where πX : X ×D → X
is the projection.

Example 6.2.2 (Maps to a space, with a fiber). We can modify the example above, by fixing
a closed m-manifold F , and defining π×F≤n (T )(X) = Maps(X × F → T ), otherwise leaving the
definition in Example 6.2.1 unchanged. Taking F to be a point recovers the previous case.

Example 6.2.3 (Linearized, twisted, maps to a space). We can linearize Examples 6.2.1 and 6.2.2
as follows. Let α be an (n+m+1)-cocycle on T with values in a ring R (have in mind the trivial
cocycle). For X of dimension less than n define πα,×F≤n (T )(X) as before, ignoring α. For X an n-ball

and c ∈ Maps(∂X ×F → T ) define πα,×F≤n (T )(X; c) to be the R-module of finite linear combinations
of continuous maps from X ×F to T , modulo the relation that if a is homotopic to b (rel boundary)
via a homotopy h : X × F × I → T , then a = α(h)b. (In order for this to be well-defined we
must choose α to be zero on degenerate simplices. Alternatively, we could equip the balls with
fundamental classes.)

Example 6.2.4 (n-categories from TQFTs). Let F be a TQFT in the sense of §2: an n-dimensional
system of fields (also denoted F) and local relations. Let W be an n−j-manifold. Define the

j-category F(W ) as follows. If X is a k-ball with k < j, let F(W )(X)
def
= F(W ×X). If X is a

j-ball and c ∈ F(W )−−−−→(∂X), let F(W )(X; c)
def
= AF (W ×X; c).

The next example is only intended to be illustrative, as we don’t specify which definition of a
“traditional n-category” we intend. Further, most of these definitions don’t even have an agreed-upon
notion of “strong duality”, which we assume here.

Example 6.2.5 (Traditional n-categories). Given a “traditional n-category with strong duality”
C define C(X), for X a k-ball with k < n, to be the set of all C-labeled embedded cell complexes
of X (c.f. §2). For X an n-ball and c ∈ C−→(∂X), define C(X; c) to be finite linear combinations
of C-labeled embedded cell complexes of X modulo the kernel of the evaluation map. Define a
product morphism a × D, for D an m-ball, to be the product of the cell complex of a with D,
with each cell labelled according to the corresponding cell for a. (These two cells have the same
codimension.) More generally, start with an n+m-category C and a closed m-manifold F . Define
C(X), for dim(X) < n, to be the set of all C-labeled embedded cell complexes of X × F . Define
C(X; c), for X an n-ball, to be the dual Hilbert space A(X × F ; c). (See §2.4.)

Example 6.2.6 (The bordism n-category, ordinary version). For a k-ball X, k < n, define Bordn(X)
to be the set of all k-dimensional submanifolds W of X × R∞ such that the projection W → X is
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transverse to ∂X. For an n-ball X define Bordn(X) to be homeomorphism classes (rel boundary) of
such n-dimensional submanifolds; we identify W and W ′ if ∂W = ∂W ′ and there is a homeomorphism
W →W ′ which restricts to the identity on the boundary.

Example 6.2.7 (Chains (or space) of maps to a space). We can modify Example 6.2.1 above to
define the fundamental A∞ n-category π∞≤n(T ) of a topological space T . For a k-ball X, with k < n,
the set π∞≤n(T )(X) is just Maps(X → T ). Define π∞≤n(T )(X; c) for an n-ball X and c ∈ π∞≤n(T )(∂X)
to be the chain complex

C∗(Mapsc(X × F → T )),

where Mapsc denotes continuous maps restricting to c on the boundary, and C∗ denotes singular
chains. Alternatively, if we take the n-morphisms to be simply Mapsc(X × F → T ), we get an A∞
n-category enriched over spaces.

See also Theorem 7.3.1 below, recovering C∗(Maps(M → T )) up to homotopy as the blob
complex of M with coefficients in π∞≤n(T ).

Example 6.2.8 (Blob complexes of balls (with a fiber)). Fix an n−k-dimensional manifold F and
an n-dimensional system of fields E . We will define an A∞ k-category C. When X is a m-ball, with
m < k, define C(X) = E(X × F ). When X is an k-ball, define C(X; c) = BE∗ (X × F ; c) where BE∗
denotes the blob complex based on E .

This example will be used in Theorem 7.1.1 below, which allows us to compute the blob complex
of a product. Notice that with F a point, the above example is a construction turning an ordinary
n-category C into an A∞ n-category. We think of this as providing a “free resolution” of the ordinary
n-category. In fact, there is also a trivial, but mostly uninteresting, way to do this: we can think of
each vector space associated to an n-ball as a chain complex concentrated in degree 0, and take
C∗(Diff(B)) to act trivially.

Beware that the “free resolution” of the ordinary n-category π≤n(T ) is not the A∞ n-category
π∞≤n(T ). It’s easy to see that with n = 0, the corresponding system of fields is just linear combinations
of connected components of T , and the local relations are trivial. There’s no way for the blob
complex to magically recover all the data of π∞≤0(T ) ∼= C∗T .

Example 6.2.9 (The bordism n-category, A∞ version). As in Example 6.2.6, for X a k-ball, k < n,
we define Bordn,∞(X) to be the set of all k-dimensional submanifolds W of X × R∞ such that
the projection W → X is transverse to ∂X. For an n-ball X with boundary condition c define
Bordn,∞(X; c) to be the space of all k-dimensional submanifolds W of X×R∞ such that W coincides
with c at ∂X × R∞. (The topology on this space is induced by ambient isotopy rel boundary.
This is homotopy equivalent to a disjoint union of copies BHomeo(W ′), where W ′ runs though
representatives of homeomorphism types of such manifolds.)

Let EBn be the operad of smooth embeddings of k (little) copies of the standard n-ball Bn into
another (big) copy of Bn. (We require that the interiors of the little balls be disjoint, but their
boundaries are allowed to meet. Note in particular that the space for k = 1 contains a copy of
Diff(Bn), namely the embeddings of a “little” ball with image all of the big ball Bn. (But note
also that this inclusion is not necessarily a homotopy equivalence.) The operad EBn is homotopy
equivalent to the standard framed little n-ball operad: by shrinking the little balls (precomposing
them with dilations), we see that both operads are homotopic to the space of k framed points in
Bn. It is easy to see that n-fold loop spaces Ωn(T ) have an action of EBn.
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Example 6.2.10 (En algebras). Let A be an EBn-algebra. Note that this implies a Diff(Bn) action
on A, since EBn contains a copy of Diff(Bn). We will define an A∞ n-category CA. If X is a ball of
dimension k < n, define CA(X) to be a point. In other words, the k-morphisms are trivial for k < n.
If X is an n-ball, we define CA(X) via a colimit construction. (Plain colimit, not homotopy colimit.)
Let J be the category whose objects are embeddings of a disjoint union of copies of the standard
ball Bn into X, and who morphisms are given by engulfing some of the embedded balls into a single
larger embedded ball. To each object of J we associate A×m (where m is the number of balls), and
to each morphism of J we associate a morphism coming from the EBn action on A. Alternatively
and more simply, we could define CA(X) to be Diff(Bn → X)×A modulo the diagonal action of
Diff(Bn). The remaining data for the A∞ n-category — composition and Diff(X → X ′) action —
also comes from the EBn action on A.

Conversely, one can show that a disk-like A∞ n-category C, where the k-morphisms C(X) are
trivial (single point) for k < n, gives rise to an EBn-algebra.

If we apply the homotopy colimit construction of the next subsection to this example, we get an
instance of Lurie’s topological chiral homology construction.

6.3 From balls to manifolds

In this section we show how to extend an n-category C as described above (of either the ordinary
or A∞ variety) to an invariant of manifolds, which we denote by C−→. This extension is a certain
colimit, and the arrow in the notation is intended as a reminder of this.

In the case of ordinary n-categories, this construction factors into a construction of a system
of fields and local relations, followed by the usual TQFT definition of a vector space invariant of
manifolds given as Definition 2.4.1. For an A∞ n-category, C−→ is defined using a homotopy colimit
instead. Recall that we can take a ordinary n-category C and pass to the “free resolution”, an A∞
n-category B∗(C), by computing the blob complex of balls (recall Example 6.2.8 above). We will
show in Corollary 7.1.3 below that the homotopy colimit invariant for a manifold M associated to
this A∞ n-category is actually the same as the original blob complex for M with coefficients in C.

Recall that we’ve already anticipated this construction in the previous section, inductively
defining C−→ on k-spheres in terms of C on k-balls, so that we can state the boundary axiom for C on
k + 1-balls.

We will first define the “decomposition” poset D(W ) for any k-manifold W , for 1 ≤ k ≤ n. An
n-category C provides a functor from this poset to the category of sets, and we will define C−→(W ) as

a suitable colimit (or homotopy colimit in the A∞ case) of this functor. We’ll later give a more
explicit description of this colimit. In the case that the n-category C is enriched (e.g. associates
vector spaces or chain complexes to n-balls with boundary data), then the resulting colimit is also
enriched, that is, the set associated to W splits into subsets according to boundary data, and each
of these subsets has the appropriate structure (e.g. a vector space or chain complex).

Recall (Definition 3.1.3) that a ball decomposition of W is a sequence of gluings M0 →M1 →
· · · →Mm = W such that M0 is a disjoint union of balls taXa. Abusing notation, we let Xa denote
both the ball (component of M0) and its image in W (which is not necessarily a ball — parts of
∂Xa may have been glued together). Define a permissible decomposition of W to be a map∐

a

Xa →W,
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which can be completed to a ball decomposition taXa = M0 → · · · → Mm = W . Roughly, a
permissible decomposition is like a ball decomposition where we don’t care in which order the balls
are glued up to yield W , so long as there is some (non-pathological) way to glue them.

Given permissible decompositions x = {Xa} and y = {Yb} of W , we say that x is a refinement of
y, or write x ≤ y, if there is a ball decomposition taXa = M0 → · · · →Mm = W with tbYb = Mi

for some i.

Definition 6.3.1. The poset D(W ) has objects the permissible decompositions of W , and a unique
morphism from x to y if and only if x is a refinement of y. See Figure 19 for an example.

Figure 19: A small part of D(W )

An n-category C determines a functor ψC;W from D(W ) to the category of sets (possibly with
additional structure if k = n). Each k-ball X of a decomposition y of W has its boundary decomposed
into k−1-balls, and, as described above, we have a subset C(X)t ⊂ C(X) of morphisms whose
boundaries are splittable along this decomposition.

Definition 6.3.2. Define the functor ψC;W : D(W ) → Set as follows. For a decomposition
x =

⊔
aXa in D(W ), ψC;W (x) is the subset

(6.1) ψC;W (x) ⊂
∏
a

C(Xa)t
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where the restrictions to the various pieces of shared boundaries amongst the cells Xa all agree (this
is a fibered product of all the labels of n-cells over the labels of n− 1-cells). If x is a refinement of y,
the map ψC;W (x)→ ψC;W (y) is given by the composition maps of C.

If k = n in the above definition and we are enriching in some auxiliary category, we need to say
a bit more. We can rewrite Equation 6.1 as

(6.2) ψC;W (x)
def
=
∐
β

∏
a

C(Xa;β),

where β runs through labelings of the k−1-skeleton of the decomposition (which are compatible
when restricted to the k−2-skeleton), and C(Xa;β) means the subset of C(Xa) whose restriction to
∂Xa agress with β. If we are enriching over S and k = n, then C(Xa;β) is an object in S and the
coproduct and product in Equation 6.2 should be replaced by the approriate operations in S (e.g.
direct sum and tensor product if S is Vect).

Finally, we construct C−→(W ) as the appropriate colimit of ψC;W :

Definition 6.3.3 (System of fields functor). If C is an n-category enriched in sets or vector spaces,
C−→(W ) is the usual colimit of the functor ψC;W . That is, for each decomposition x there is a map

ψC;W (x) → C−→(W ), these maps are compatible with the refinement maps above, and C−→(W ) is
universal with respect to these properties.

Definition 6.3.4 (System of fields functor, A∞ case). When C is an A∞ n-category, C−→(W ) for W
a k-manifold with k < n is defined as above, as the colimit of ψC;W . When W is an n-manifold, the
chain complex C−→(W ) is the homotopy colimit of the functor ψC;W .

We can specify boundary data c ∈ C−→(∂W ), and define functors ψC;W,c with values the subsets
of those of ψC;W which agree with c on the boundary of W .

We now give more concrete descriptions of the above colimits.
In the non-enriched case (e.g. k < n), where each C(Xa;β) is just a set, the colimit is

C−→(W, c) =

∐
x

∐
β

∏
a

C(Xa;β)

/ ∼,

where x runs through decomposition of W , and ∼ is the obvious equivalence relation induced by
refinement and gluing. If C is enriched over vector spaces and W is an n-manifold, we can take

C−→(W, c) =

⊕
x

⊕
β

⊗
a

C(Xa;β)

/K,

where K is the vector space spanned by elements a−g(a), with a ∈ ψC;W,c(x) for some decomposition
x, and g : ψC;W,c(x)→ ψC;W,c(y) is value of ψC;W,c on some antirefinement x ≤ y.

In the A∞ case, enriched over chain complexes, the concrete description of the homotopy colimit
is more involved. We will describe two different (but homotopy equivalent) versions of the homotopy
colimit of ψC;W . The first is the usual one, which works for any indexing category. The second
construction, which we call the local homotopy colimit, is more closely related to the blob complex
construction of §3.1 and takes advantage of local (gluing) properties of the indexing category D(W ).
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Define an m-sequence in W to be a sequence x0 ≤ x1 ≤ · · · ≤ xm of permissible decompositions
of W . Such sequences (for all m) form a simplicial set in D(W ). Define C−→(W ) as a vector space via

C−→(W ) =
⊕
(xi)

ψC;W (x0)[m],

where the sum is over all m and all m-sequences (xi), and each summand is degree shifted by m.
Elements of a summand indexed by an m-sequence will be call m-simplices. We endow C−→(W ) with

a differential which is the sum of the differential of the ψC;W (x0) summands plus another term using
the differential of the simplicial set of m-sequences. More specifically, if (a, x̄) denotes an element in
the x̄ summand of C−→(W ) (with x̄ = (x0, . . . , xk)), define

∂(a, x̄) = (∂a, x̄) + (−1)deg a(g(a), d0(x̄)) + (−1)deg a
k∑
j=1

(−1)j(a, dj(x̄)),

where dj(x̄) = (x0, . . . , xj−1, xj+1, . . . , xk) and g : ψC(x0)→ ψC(x1) is the usual gluing map coming
from the antirefinement x0 ≤ x1.

We can think of this construction as starting with a disjoint copy of a complex for each permissible
decomposition (the 0-simplices). Then we glue these together with mapping cylinders coming from
gluing maps (the 1-simplices). Then we kill the extra homology we just introduced with mapping
cylinders between the mapping cylinders (the 2-simplices), and so on.

Next we describe the local homotopy colimit. This is similar to the usual homotopy colimit, but
using a cone-product set (Remark 3.1.7) in place of a simplicial set. The cone-product m-polyhedra
for the set are pairs (x,E), where x is a decomposition of W and E is an m-blob diagram such
that each blob is a union of balls of x. (Recall that this means that the interiors of each pair of
blobs (i.e. balls) of E are either disjoint or nested.) To each (x,E) we associate the chain complex
ψC;W (x), shifted in degree by m. The boundary has a term for omitting each blob of E. If we omit
an innermost blob then we replace x by the formal difference x− gl(x), where gl(x) is obtained from
x by gluing together the balls of x contained in the blob we are omitting. The gluing maps of C
give us a maps from ψC;W (x) to ψC;W (gl(x)).

One can show that the usual hocolimit and the local hocolimit are homotopy equivalent using
an Eilenberg-Zilber type subdivision argument.

C−→(W ) is functorial with respect to homeomorphisms of k-manifolds. Restricting the k-spheres,
we have now proved Lemma 6.1.2.

It is easy to see that there are well-defined maps C−→(W ) → C−→(∂W ), and that these maps
comprise a natural transformation of functors.

Lemma 6.3.5. Let W be a manifold of dimension less than n. Then for each decomposition x of
W the natural map ψC;W (x)→ C−→(W ) is injective.

Proof. C−→(W ) is a colimit of a diagram of sets, and each of the arrows in the diagram is injective.

Concretely, the colimit is the disjoint union of the sets (one for each decomposition of W ), modulo
the relation which identifies the domain of each of the injective maps with it’s image.

To save ink and electrons we will simplify notation and write ψ(x) for ψC;W (x).
Suppose a, â ∈ ψ(x) have the same image in C−→(W ) but a 6= â. Then there exist
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• decompositions x = x0, x1, . . . , xk−1, xk = x and v1, . . . , vk of W ;

• anti-refinements vi → xi and vi → xi−1; and

• elements ai ∈ ψ(xi) and bi ∈ ψ(vi), with a0 = a and ak = â, such that bi and bi+1both map to
(glue up to) ai.

In other words, we have a zig-zag of equivalences starting at a and ending at â. The idea of the
proof is to produce a similar zig-zag where everything antirefines to the same disjoint union of balls,
and then invoke Axiom 6.1.6 which ensures associativity.

Let z be a decomposition of W which is in general position with respect to all of the xi’s and
vi’s. There there decompositions x′i and v′i (for all i) such that

• x′i antirefines to xi and z;

• v′i antirefines to x′i, x
′
i−1 and vi;

• bi is the image of some b′i ∈ ψ(v′i); and

• ai is the image of some a′i ∈ ψ(x′i), which in turn is the image of b′i and b′i+1.

Now consider the diagrams

ψ(x′i−1)

$$HHHHHHHHH

ψ(v′i)

::uuuuuuuuu

$$IIIIIIIII
ψ(z)

ψ(x′i)

::uuuuuuuuu

The associativity axiom applied to this diagram implies that a′i−1 and a′i map to the same element
c ∈ ψ(z). Therefore a′0 and a′k both map to c. But a′0 and a′k are both elements of ψ(x′0) (because
x′k = x′0). So by the injectivity clause of the composition axiom, we must have that a′0 = a′k. But
this implies that a = a0 = ak = â, contrary to our assumption that a 6= â.

6.4 Modules

Next we define ordinary and A∞ n-category modules. The definition will be very similar to that of
n-categories, but with k-balls replaced by marked k-balls, defined below.

Our motivating example comes from an (m−n+1)-dimensional manifold W with boundary in
the context of an m+1-dimensional TQFT. Such a W gives rise to a module for the n-category
associated to ∂W . This will be explained in more detail as we present the axioms.

Throughout, we fix an n-category C. For all but one axiom, it doesn’t matter whether C
is an ordinary n-category or an A∞ n-category. We state the final axiom, regarding actions of
homeomorphisms, differently in the two cases.

Define a marked k-ball to be a pair (B,N) homeomorphic to the pair

(standard k-ball, northern hemisphere in boundary of standard k-ball).

We call B the ball and N the marking. A homeomorphism between marked k-balls is a homeomor-
phism of balls which restricts to a homeomorphism of markings.
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Module Axiom 6.4.1 (Module morphisms). For each 0 ≤ k ≤ n, we have a functor Mk from the
category of marked k-balls and homeomorphisms to the category of sets and bijections.

(As with n-categories, we will usually omit the subscript k.)
For example, let D be the TQFT which assigns to a k-manifold N the set of maps from N

to T (for k ≤ m), modulo homotopy (and possibly linearized) if k = m. Let W be an (m−n+1)-

dimensional manifold with boundary. Let C be the n-category with C(X)
def
= D(X × ∂W ). Let

M(B,N)
def
= D((B × ∂W ) ∪ (N ×W )) (see Example 6.2.2). (The union is along N × ∂W .)

Figure 20: From manifold with boundary collar to marked ball

Define the boundary of a marked k-ball (B,N) to be the pair (∂B \N, ∂N). Call such a thing a
marked k−1-hemisphere.

Lemma 6.4.2. For each 0 ≤ k ≤ n − 1, we have a functor M−→k from the category of marked
k-hemispheres and homeomorphisms to the category of sets and bijections.

The proof is exactly analogous to that of Lemma 6.1.2, and we omit the details. We use the
same type of colimit construction.

In our example, M−→(H) = D(H × ∂W ∪ ∂H ×W ).

Module Axiom 6.4.3 (Module boundaries (maps)). For each marked k-ball M we have a map
of sets ∂ :M(M)→M−→(∂M). These maps, for various M , comprise a natural transformation of
functors.

Given c ∈M−→(∂M), let M(M ; c)
def
= ∂−1(c).

If the n-category C is enriched over some other category (e.g. vector spaces), then M(M ; c)
should be an object in that category for each marked n-ball M and c ∈ C(∂M).

Lemma 6.4.4 (Boundary from domain and range). Let H = M1∪EM2, where H is a marked k−1-
hemisphere (1 ≤ k ≤ n), Mi is a marked k−1-ball, and E = M1 ∩M2 is a marked k−2-hemisphere.
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Let M(M1)×M(E)M(M2) denote the fibered product of the two maps ∂ :M(Mi)→M−→(E). Then
we have an injective map

glE :M(M1)×M−→(E)M(M2) ↪→M−→(H)

which is natural with respect to the actions of homeomorphisms.

Again, this is in exact analogy with Lemma 6.1.4.
Let M−→(H)E denote the image of glE . We will refer to elements of M−→(H)E as “splittable along

E” or “transverse to E”.

Lemma 6.4.5 (Module to category restrictions). For each marked k-hemisphere H there is a
restriction map M−→(H)→ C(H). (C(H) means apply C to the underlying k-ball of H.) These maps
comprise a natural transformation of functors.

Note that combining the various boundary and restriction maps above (for both modules and
n-categories) we have for each marked k-ball (B,N) and each k−1-ball Y ⊂ ∂B \N a natural map
from a subset of M(B,N) to C(Y ). The subset is the subset of morphisms which are appropriately
splittable (transverse to the cutting submanifolds). This fact will be used below.

In our example, the various restriction and gluing maps above come from restricting and gluing
maps into T .

We require two sorts of composition (gluing) for modules, corresponding to two ways of splitting
a marked k-ball into two (marked or plain) k-balls. (See Figure 21.)

Figure 21: Module composition (top); n-category action (bottom).

First, we can compose two module morphisms to get another module morphism.

Module Axiom 6.4.6 (Module composition). Let M = M1 ∪Y M2, where M , M1 and M2 are
marked k-balls (with 0 ≤ k ≤ n) and Y = M1 ∩M2 is a marked k−1-ball. Let E = ∂Y , which
is a marked k−2-hemisphere. Note that each of M , M1 and M2 has its boundary split into two
marked k−1-balls by E. We have restriction (domain or range) maps M(Mi)E → M(Y ). Let
M(M1)E ×M(Y )M(M2)E denote the fibered product of these two maps. Then (axiom) we have a
map

glY :M(M1)E ×M(Y )M(M2)E →M(M)E

which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
to the intersection of the boundaries of M and Mi. If k < n, or if k = n and we are in the A∞
case, we require that glY is injective. (For k = n in the ordinary (non-A∞) case, see below.)
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Second, we can compose an n-category morphism with a module morphism to get another module
morphism. We’ll call this the action map to distinguish it from the other kind of composition.

Module Axiom 6.4.7 (n-category action). Let M = X∪YM ′, where M and M ′ are marked k-balls
(0 ≤ k ≤ n), X is a plain k-ball, and Y = X∩M ′ is a k−1-ball. Let E = ∂Y , which is a k−2-sphere.
We have restriction maps M(M ′)E → C(Y ) and C(X)E → C(Y ). Let C(X)E ×C(Y )M(M ′)E denote
the fibered product of these two maps. Then (axiom) we have a map

glY : C(X)E ×C(Y )M(M ′)E →M(M)E

which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
to the intersection of the boundaries of X and M ′. If k < n, or if k = n and we are in the A∞ case,
we require that glY is injective. (For k = n in the ordinary (non-A∞) case, see below.)

Module Axiom 6.4.8 (Strict associativity). The composition and action maps above are strictly
associative. Given any decomposition of a large marked ball into smaller marked and unmarked balls
any sequence of pairwise gluings yields (via composition and action maps) the same result.

Note that the above associativity axiom applies to mixtures of module composition, action maps
and n-category composition. See Figure 22.

Figure 22: Two examples of mixed associativity

The above three axioms are equivalent to the following axiom, which we state in slightly vague
form.

Module multi-composition: Given any splitting

X1 t · · · tXp tM1 t · · · tMq →M
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of a marked k-ball M into small (marked and plain) k-balls Mi and Xj, there is a map from an
appropriate subset (like a fibered product) of

C(X1)× · · · × C(Xp)×M(M1)× · · · ×M(Mq)

to M(M), and these various multifold composition maps satisfy an operad-type strict associativity
condition.

The above operad-like structure is analogous to the swiss cheese operad [Vor99].

We can define marked pinched products π : E →M of marked balls analogously to the plain
ball case. Note that a marked pinched product can be decomposed into either two marked pinched
products or a plain pinched product and a marked pinched product.

Module Axiom 6.4.9 (Product (identity) morphisms). For each pinched product π : E → M ,
with M a marked k-ball and E a marked k+m-ball (m ≥ 1), there is a map π∗ :M(M)→M(E).
These maps must satisfy the following conditions.

1. If π : E → M and π′ : E′ → M ′ are marked pinched products, and if f : M → M ′ and
f̃ : E → E′ are maps such that the diagram

E
f̃

//

π

��

E′

π′

��

M
f

// M ′

commutes, then we have
π′∗ ◦ f = f̃ ◦ π∗.

2. Product morphisms are compatible with module composition and module action. Let π : E →M ,
π1 : E1 →M1, and π2 : E2 →M2 be pinched products with E = E1 ∪E2. Let a ∈M(M), and
let ai denote the restriction of a to Mi ⊂M . Then

π∗(a) = π∗1(a1) • π∗2(a2).

Similarly, if ρ : D → X is a pinched product of plain balls and E = D ∪ E1, then

π∗(a) = ρ∗(a′) • π∗1(a1),

where a′ is the restriction of a to D.

3. Product morphisms are associative. If π : E →M and ρ : D → E are marked pinched products
then

ρ∗ ◦ π∗ = (π ◦ ρ)∗.

4. Product morphisms are compatible with restriction. If we have a commutative diagram

D
� � //

ρ

��

E

π

��

Y
� � // M
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such that ρ and π are pinched products, then

resD ◦π∗ = ρ∗ ◦ resY .

(Y could be either a marked or plain ball.)

As in the n-category definition, once we have product morphisms we can define collar maps
M(M) → M(M). Note that there are two cases: the collar could intersect the marking of the
marked ball M , in which case we use a product on a morphism of M; or the collar could be disjoint
from the marking, in which case we use a product on a morphism of C.

In our example, elements a of M(M) maps to T , and π∗(a) is the pullback of a along a map
associated to π.

There are two alternatives for the next axiom, according whether we are defining modules for
ordinary n-categories or A∞ n-categories. In the ordinary case we require

Module Axiom 6.4.10 ([ordinary version] Extended isotopy invariance in dimension n). Let
M be a marked n-ball and f : M →M be a homeomorphism which restricts to the identity on ∂M
and is isotopic (rel boundary) to the identity. Then f acts trivially on M(M). In addition, collar
maps act trivially on M(M).

We emphasize that the ∂M above means boundary in the marked k-ball sense. In other words,
if M = (B,N) then we require only that isotopies are fixed on ∂B \N .

For A∞ modules we require

Module Axiom 6.4.11 ([A∞ version] Families of homeomorphisms act). For each marked n-ball
M and each c ∈M(∂M) we have a map of chain complexes

C∗(Homeo∂(M))⊗M(M ; c)→M(M ; c).

Here C∗ means singular chains and Homeo∂(M) is the space of homeomorphisms of M which fix
∂M . These action maps are required to be associative up to homotopy, as in Theorem 5.2.2, and
also compatible with composition (gluing) in the sense that a diagram like the one in Theorem 5.2.1
commutes.

As with the n-category version of the above axiom, we should also have families of collar maps
act.

Note that the above axioms imply that an n-category module has the structure of an n−1-

category. More specifically, let J be a marked 1-ball, and define E(X)
def
= M(X × J), where X is a

k-ball and in the product X × J we pinch above the non-marked boundary component of J . (More
specifically, we collapse X × P to a single point, where P is the non-marked boundary component
of J .) Then E has the structure of an n−1-category.

All marked k-balls are homeomorphic, unless k = 1 and our manifolds are oriented or Spin (but
not unoriented or Pin±). In this case (k = 1 and oriented or Spin), there are two types of marked
1-balls, call them left-marked and right-marked, and hence there are two types of modules, call
them right modules and left modules. In all other cases (k > 1 or unoriented or Pin±), there is no
left/right module distinction.

We now give some examples of modules over ordinary and A∞ n-categories.
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Example 6.4.12 (Examples from TQFTs). Continuing Example 6.2.4, with F a TQFT, W an
n−j-manifold, and F(W ) the j-category associated to W . Let Y be an (n−j+1)-manifold with
∂Y = W . Define a F(W ) module F(Y ) as follows. If M = (B,N) is a marked k-ball with k < j

let F(Y )(M)
def
= F((B ×W ) ∪ (N × Y )). If M = (B,N) is a marked j-ball and c ∈ F(Y )−−−→(∂M) let

F(Y )(M)
def
= AF ((B ×W ) ∪ (N × Y ); c).

Example 6.4.13 (Examples from the blob complex). In the previous example, we can instead

define F(Y )(M)
def
= B∗((B×W )∪ (N × Y ), c;F) (when dim(M) = n) and get a module for the A∞

n-category associated to F as in Example 6.2.8.

Example 6.4.14. Suppose S is a topological space, with a subspace T . We can define a module
π≤n(S, T ) so that on each marked k-ball (B,N) for k < n the set π≤n(S, T )(B,N) consists of all
continuous maps of pairs (B,N)→ (S, T ) and on each marked n-ball (B,N) it consists of all such
maps modulo homotopies fixed on ∂B \ N . This is a module over the fundamental n-category
π≤n(S) of S, from Example 6.2.1.

Modifications corresponding to Examples 6.2.2 and 6.2.3 are also possible, and there is an A∞
version analogous to Example 6.2.7 given by taking singular chains.

6.5 Modules as boundary labels (colimits for decorated manifolds)

Fix an ordinary n-category or A∞ n-category C. Let W be a k-manifold (k ≤ n), let {Yi} be a
collection of disjoint codimension 0 submanifolds of ∂W , and let N = (Ni) be an assignment of a C
module Ni to Yi.

We will define a set C(W,N ) using a colimit construction very similar to the one appearing in
§6.3 above. (If k = n and our n-categories are enriched, then C(W,N ) will have additional structure;
see below.)

Define a permissible decomposition of W to be a map(⊔
a

Xa

)
t

⊔
i,b

Mib

→W,

where each Xa is a plain k-ball disjoint, in W , from ∪Yi, and each Mib is a marked k-ball intersecting
Yi (once mapped into W ), with Mib ∩ Yi being the marking, which extends to a ball decomposition
in the sense of Definition 3.1.3. (See Figure 23.) Given permissible decompositions x and y, we say
that x is a refinement of y, or write x ≤ y, if each ball of y is a union of balls of x. This defines a
partial ordering D(W ), which we will think of as a category. (The objects of D(D) are permissible
decompositions of W , and there is a unique morphism from x to y if and only if x is a refinement of
y.)

The collection of modules N determines a functor ψN from D(W ) to the category of sets
(possibly with additional structure if k = n). For a decomposition x = (Xa,Mib) in D(W ), define
ψN (x) to be the subset

ψN (x) ⊂
(∏

a

C(Xa)

)
×
(∏

ib

Ni(Mib)

)
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Figure 23: A permissible decomposition of a manifold whose boundary components are labeled by C
modules {Ni}. Marked balls are shown shaded, plain balls are unshaded.

such that the restrictions to the various pieces of shared boundaries amongst the Xa and Mib all
agree. (That is, the fibered product over the boundary restriction maps.) If x is a refinement of y,
define a map ψN (x)→ ψN (y) via the gluing (composition or action) maps from C and the Ni.

We now define the set C(W,N ) to be the colimit of the functor ψN . (As in §6.3, if k = n we
take a colimit in whatever category we are enriching over, and if additionally we are in the A∞ case,
then we use a homotopy colimit.)

If D is an m-ball, 0 ≤ m ≤ n − k, then we can similarly define C(D ×W,N ), where in this
case Ni labels the submanifold D × Yi ⊂ ∂(D ×W ). It is not hard to see that the assignment
D 7→ C(D ×W,N ) has the structure of an n−k-category.

We will use a simple special case of the above construction to define tensor products of modules.
LetM1 andM2 be modules for an n-category C. (If k = 1 and our manifolds are oriented, then one
should be a left module and the other a right module.) Choose a 1-ball J , and label the two boundary
points of J byM1 andM2. Define the tensor productM1⊗M2 to be the n−1-category associated
as above to J with its boundary labeled by M1 and M2. This of course depends (functorially) on
the choice of 1-ball J .

We will define a more general self tensor product (categorified coend) below.

6.6 Morphisms of modules

Modules are collections of functors together with some additional data, so we define morphisms of
modules to be collections of natural transformations which are compatible with this additional data.

More specifically, let X and Y be C modules, i.e. collections of functors {Xk} and {Yk}, for
0 ≤ k ≤ n, from marked k-balls to sets as in Module Axiom 6.4.1. A morphism g : X → Y is a
collection of natural transformations gk : Xk → Yk satisfying:

• Each gk commutes with ∂.

• Each gk commutes with gluing (module composition and C action).
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• Each gk commutes with taking products.

• In the top dimension k = n, gn preserves whatever additional structure we are enriching over
(e.g. vector spaces). In the A∞ case (e.g. enriching over chain complexes) gn should live in an
appropriate derived hom space, as described below.

We will be mainly interested in the case n = 1 and enriched over chain complexes, since this is
the case that’s relevant to the generalized Deligne conjecture of §8. So we treat this case in more
detail.

First we explain the remark about derived hom above. Let L be a marked 1-ball and let X−→(L)

denote the local homotopy colimit construction associated to L by X and C. (See §6.3 and §6.5.)
Define Y−→(L) similarly. For K an unmarked 1-ball let C(K)−−−→ denote the local homotopy colimit

construction associated to K by C. Then we have an injective gluing map

gl : X−→(L)⊗ C−→(K)→ X−→(L ∪K)

which is also a chain map. (For simplicity we are suppressing mention of boundary conditions on
the unmarked boundary components of the 1-balls.) We define homC(X → Y) to be a collection
of (graded linear) natural transformations g : X−→(L) → Y−→(L) such that the following diagram

commutes for all L and K:

X−→(L)⊗ C−→(K)
gl

//

g⊗1
��

X−→(L ∪K)

g

��

Y−→(L)⊗ C−→(K) gl
// Y−→(L ∪K)

The usual differential on graded linear maps between chain complexes induces a differential on
homC(X → Y), giving it the structure of a chain complex.

Let Z be another C module. We define a chain map

a : homC(X → Y)⊗ (X ⊗C Z)→ Y ⊗C Z

as follows. Recall that the tensor product X ⊗C Z depends on a choice of interval J , labeled by
X on one boundary component and Z on the other. Because we are using the local homotopy
colimit, any generator D ⊗ x⊗ c̄⊗ z of X ⊗C Z can be written (perhaps non-uniquely) as a gluing
(D′ ⊗ x⊗ c̄′) • (D′′ ⊗ c̄′′ ⊗ z), for some decomposition J = L′ ∪ L′′ and with D′ ⊗ x⊗ c̄′ a generator
of X−→(L′) and D′′ ⊗ c̄′′ ⊗ z a generator of Z−→(L′′). (Such a splitting exists because the blob diagram
D can be split into left and right halves, since no blob can include both the leftmost and rightmost
intervals in the underlying decomposition. This step would fail if we were using the usual hocolimit
instead of the local hocolimit.) We now define

a : g ⊗ (D ⊗ x⊗ c̄⊗ z) 7→ g(D′ ⊗ x⊗ c̄′) • (D′′ ⊗ c̄′′ ⊗ z).

This does not depend on the choice of splitting D = D′ •D′′ because g commutes with gluing.
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Figure 24: 0-marked 1-ball and 0-marked 2-ball

6.7 The n+1-category of sphere modules

In this subsection we define n+1-categories S of “sphere modules” whose objects are n-categories.
With future applications in mind, we treat simultaneously the big category of all n-categories and
all sphere modules and also subcategories thereof. When n = 1 this is closely related to familiar
2-categories consisting of algebras, bimodules and intertwiners (or a subcategory of that).

While it is appropriate to call an S0 module a bimodule, this is much less true for higher
dimensional spheres, so we prefer the term “sphere module” for the general case.

For simplicity, we will assume that n-categories are enriched over C-vector spaces.
The 0- through n-dimensional parts of S are various sorts of modules, and we describe these

first. The n+1-dimensional part of S consists of intertwiners of 1-category modules associated to
decorated n-balls. We will see below that in order for these n+1-morphisms to satisfy all of the
axioms of an n+1-category (in particular, duality requirements), we will have to assume that our
n-categories and modules have non-degenerate inner products. (In other words, we need to assume
some extra duality on the n-categories and modules.)

Our first task is to define an n-category m-sphere module, for 0 ≤ m ≤ n − 1. These will be
defined in terms of certain classes of marked balls, very similarly to the definition of n-category
modules above. (This, in turn, is very similar to our definition of n-category.) Because of this
similarity, we only sketch the definitions below.

We start with 0-sphere modules, which also could reasonably be called (categorified) bimodules.
(For n = 1 they are precisely bimodules in the usual, uncategorified sense.) We prefer the more
awkward term “0-sphere module” to emphasize the analogy with the higher sphere modules defined
below.

Define a 0-marked k-ball, 1 ≤ k ≤ n, to be a pair (X,M) homeomorphic to the standard
(Bk, Bk−1). See Figure 24. Another way to say this is that (X,M) is homeomorphic to Bk−1 ×
([−1, 1], {0}).

The 0-marked balls can be cut into smaller balls in various ways. We only consider those
decompositions in which the smaller balls are either 0-marked (i.e. intersect the 0-marking of the
large ball in a disc) or plain (don’t intersect the 0-marking of the large ball). We can also take the
boundary of a 0-marked ball, which is 0-marked sphere.

Fix n-categories A and B. These will label the two halves of a 0-marked k-ball.
An n-category 0-sphere module M over the n-categories A and B is a collection of functors Mk

from the category of 0-marked k-balls, 1 ≤ k ≤ n, (with the two halves labeled by A and B) to
the category of sets. If k = n these sets should be enriched to the extent A and B are. Given a
decomposition of a 0-marked k-ball X into smaller balls Xi, we have morphism sets Ak(Xi) (if Xi

lies on the A-labeled side) or Bk(Xi) (if Xi lies on the B-labeled side) or Mk(Xi) (if Xi intersects
the marking and is therefore a smaller 0-marked ball). Corresponding to this decomposition we
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Figure 25: The pinched product X × J
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Figure 26: Marked and labeled 1-manifolds

have a composition (or “gluing”) map from the product (fibered over the boundary data) of these
various sets into Mk(X).

Part of the structure of an n-category 0-sphere moduleM is captured by saying it is a collection
Dab of n−1-categories, indexed by pairs (a, b) of objects (0-morphisms) of A and B. Let J be some
standard 0-marked 1-ball (i.e. an interval with a marked point in its interior). Given a j-ball X,
0 ≤ j ≤ n− 1, we define

D(X)
def
= M(X × J).

The product is pinched over the boundary of J . The set D breaks into “blocks” according to the
restrictions to the pinched points of X × J (see Figure 25). These restrictions are 0-morphisms (a, b)
of A and B.

More generally, consider an interval with interior marked points, and with the complements
of these points labeled by n-categories Ai (0 ≤ i ≤ l) and the marked points labeled by Ai-Ai+1

0-sphere modules Mi. (See Figure 26.) To this data we can apply the coend construction as in §6.5
above to obtain an A0-Al 0-sphere module and, forgetfully, an n−1-category. This amounts to a
definition of taking tensor products of 0-sphere modules over n-categories.

We could also similarly mark and label a circle, obtaining an n−1-category associated to the
marked and labeled circle. (See Figure 26.) If the circle is divided into two intervals, we can think
of this n−1-category as the 2-sided tensor product of the two 0-sphere modules associated to the
two intervals.

Next we define n-category 1-sphere modules. These are just representations of (modules for)
n−1-categories associated to marked and labeled circles (1-spheres) which we just introduced.
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Figure 27: Cone on a marked circle, the prototypical 1-marked ball

0-marked ball

1-marked ball

plain ball

Figure 28: Subdividing a 1-marked ball into plain, 0-marked and 1-marked balls.

Equivalently, we can define 1-sphere modules in terms of 1-marked k-balls, 2 ≤ k ≤ n. Fix a
marked (and labeled) circle S. Let C(S) denote the cone of S, a marked 2-ball (Figure 27). A
1-marked k-ball is anything homeomorphic to Bj × C(S), 0 ≤ j ≤ n− 2, where Bj is the standard
j-ball. A 1-marked k-ball can be decomposed in various ways into smaller balls, which are either
(a) smaller 1-marked k-balls, (b) 0-marked k-balls, or (c) plain k-balls. (See Figure 28.) We now
proceed as in the above module definitions.

A n-category 1-sphere module is, among other things, an n−2-category D with

D(X)
def
= M(X × C(S)).

The product is pinched over the boundary of C(S). D breaks into “blocks” according to the
restriction to the image of ∂C(S) = S in X × C(S).

More generally, consider a 2-manifold Y (e.g. 2-ball or 2-sphere) marked by an embedded
1-complex K. The components of Y \K are labeled by n-categories, the edges of K are labeled by
0-sphere modules, and the 0-cells of K are labeled by 1-sphere modules. We can now apply the
coend construction and obtain an n−2-category. If Y has boundary then this n−2-category is a
module for the n−1-category associated to the (marked, labeled) boundary of Y . In particular, if
∂Y is a 1-sphere then we get a 1-sphere module as defined above.

It should now be clear how to define n-category m-sphere modules for 0 ≤ m ≤ n − 1. For
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example, there is an n−2-category associated to a marked, labeled 2-sphere, and a 2-sphere module
is a representation of such an n−2-category.

We can now define the n-or-less-dimensional part of our n+1-category S. Choose some collection
of n-categories, then choose some collections of 0-sphere modules between these n-categories, then
choose some collection of 1-sphere modules for the various possible marked 1-spheres labeled by the
n-categories and 0-sphere modules, and so on. Let Li denote the collection of i−1-sphere modules
we have chosen. (For convenience, we declare a (−1)-sphere module to be an n-category.) There
is a wide range of possibilities. The set L0 could contain infinitely many n-categories or just one.
For each pair of n-categories in L0, L1 could contain no 0-sphere modules at all or it could contain
several. The only requirement is that each k-sphere module be a module for a k-sphere n−k-category
constructed out of labels taken from Lj for j < k.

We now define S(X), for X a ball of dimension at most n, to be the set of all cell-complexes K
embedded in X, with the codimension-j parts of (X,K) labeled by elements of Lj . As described
above, we can think of each decorated k-ball as defining a k−1-sphere module for the n−k+1-
category associated to its decorated boundary. Thus the k-morphisms of S (for k ≤ n) can be
thought of as n-category k−1-sphere modules (generalizations of bimodules). On the other hand,
we can equally well think of the k-morphisms as decorations on k-balls, and from this point of
view it is clear that they satisfy all of the axioms of an n+1-category. (All of the axioms for the
less-than-n+1-dimensional part of an n+1-category, that is.)

Next we define the n+1-morphisms of S. The construction of the 0- through n-morphisms was
easy and tautological, but the n+1-morphisms will require some effort and combinatorial topology,
as well as additional duality assumptions on the lower morphisms. These are required because
we define the spaces of n+1-morphisms by making arbitrary choices of incoming and outgoing
boundaries for each n-ball. The additional duality assumptions are needed to prove independence of
our definition form these choices.

Let X be an n+1-ball, and let c be a decoration of its boundary by a cell complex labeled by 0-
through n-morphisms, as above. Choose an n−1-sphere E ⊂ ∂X which divides ∂X into “incoming”
and “outgoing” boundary ∂−X and ∂+X. Let Ec denote E decorated by the restriction of c to E.
Recall from above the associated 1-category S(Ec). We can also have S(Ec) modules S(∂−Xc) and
S(∂+Xc). Define

S(X; c;E)
def
= homS(Ec)(S(∂−Xc),S(∂+Xc)).

We will show that if the sphere modules are equipped with a “compatible family of non-degenerate
inner products”, then there is a coherent family of isomorphisms S(X; c;E) ∼= S(X; c;E′) for all
pairs of choices E and E′. This will allow us to define S(X; c) independently of the choice of E.

First we must define “inner product”, “non-degenerate” and “compatible”. Let Y be a decorated
n-ball, and Y it’s mirror image. (We assume we are working in the unoriented category.) Let Y ∪ Y
denote the decorated n-sphere obtained by gluing Y and Y along their common boundary. An inner
product on S(Y ) is a dual vector

zY : S(Y ∪ Y )→ C.

We will also use the notation
〈a, b〉 def= zY (a • b) ∈ C.
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Figure 29: Y × I sliced open

An inner product induces a linear map

ϕ : S(Y ) → S(Y )∗

a 7→ 〈a, ·〉

which satisfies, for all morphisms e of S(∂Y ),

ϕ(ae)(b) = 〈ae, b〉 = zY (a • e • b) = 〈a, eb〉 = ϕ(a)(eb).

In other words, ϕ is a map of S(∂Y ) modules. An inner product is non-degenerate if ϕ is an
isomorphism. This implies that S(Y ; c) is finite dimensional for all boundary conditions c. (One
can think of these inner products as giving some duality in dimension n+1; heretofore we have only
assumed duality in dimensions 0 through n.)

Next we define compatibility. Let Y = Y1 ∪ Y2 with D = Y1 ∩ Y2. Let X1 and X2 be the two
components of Y × I cut along D × I, in both cases using the pinched product. (Here we are
overloading notation and letting D denote both a decorated and an undecorated manifold.) We
have ∂Xi = Yi ∪Y i ∪ (D× I) (see Figure 29). Given ai ∈ S(Yi), bi ∈ S(Y i) and v ∈ S(D× I) which
agree on their boundaries, we can evaluate

zYi(ai • bi • v) ∈ C.

(This requires a choice of homeomorphism Yi ∪ Y i ∪ (D × I) ∼= Yi ∪ Y i, but the value of zYi is
independent of this choice.) We can think of zYi as giving a function

ψi : S(Yi)⊗ S(Y i)→ S(D × I)∗
ϕ−1

−→ S(D × I).

We can now finally define a family of inner products to be compatible if for all decompositions
Y = Y1 ∪ Y2 as above and all ai ∈ S(Yi), bi ∈ S(Y i) we have

zY (a1 • a2 • b1 • b2) = zD×I(ψ1(a1 ⊗ b1) • ψ2(a2 ⊗ b2)).

In other words, the inner product on Y is determined by the inner products on Y1, Y2 and D × I.
Now we show how to unambiguously identify S(X; c;E) and S(X; c;E′) for any two choices of

E and E′. Consider first the case where ∂X is decomposed as three n-balls A, B and C, with E =

68



B̄

D × I

B
A

C

D

↑ f

↑ ψ

Figure 30: Moving B from top to bottom
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Figure 31: Moving B from bottom to top

∂(A∪B) and E′ = ∂A. We must provide an isomorphism between S(X; c;E) = hom(S(C),S(A∪B))
and S(X; c;E′) = hom(S(C ∪B),S(A)). Let D = B ∩A. Then as above we can construct a map

ψ : S(B)⊗ S(B)→ S(D × I).

Given f ∈ hom(S(C),S(A ∪B)) we define f ′ ∈ hom(S(C ∪B),S(A)) to be the composition

S(C ∪B)
f⊗1−→ S(A ∪B ∪B)

1⊗ψ−→ S(A ∪ (D × I))
∼=−→ S(A).

(See Figure 30.) Let D′ = B ∩ C. Using the inner products there is an adjoint map

ψ† : S(D′ × I)→ S(B)⊗ S(B).

Given f ′ ∈ hom(S(C ∪B),S(A)) we define f ∈ hom(S(C),S(A ∪B)) to be the composition

S(C)
∼=−→ S(C ∪ (D′ × I))

1⊗ψ†−→ S(C ∪B ∪B)
f ′⊗1−→ S(A ∪B).

(See Figure 31.) Let D′ = B ∩ C. It is not hard too show that the above two maps are mutually
inverse.

Lemma 6.7.1. Any two choices of E and E′ are related by a series of modifications as above.

69



B1

B2
A

C

E

B1

B2
A

C

E

B1

B2
A

C

E

push B1 push B2

push B1 ∪B2

Figure 32: A movie move

Proof. (Sketch) E and E′ are isotopic, and any isotopy is homotopic to a composition of small
isotopies which are either (a) supported away from E, or (b) modify E in the simple manner
described above.

It follows from the lemma that we can construct an isomorphism between S(X; c;E) and
S(X; c;E′) for any pair E, E′. This construction involves on a choice of simple “moves” (as above)
to transform E to E′. We must now show that the isomorphism does not depend on this choice.
We will show below that it suffice to check two “movie moves”.

The first movie move is to push E across an n-ball B as above, then push it back. The result is
equivalent to doing nothing. As we remarked above, the isomorphisms corresponding to these two
pushes are mutually inverse, so we have invariance under this movie move.

The second movie move replaces two successive pushes in the same direction, across B1 and B2,
say, with a single push across B1 ∪B2. (See Figure 32.) Invariance under this movie move follows
from the compatibility of the inner product for B1 ∪B2 with the inner products for B1 and B2.

If n ≥ 2, these two movie move suffice:

Lemma 6.7.2. Assume n ≥ 2 and fix E and E′ as above. Then any two sequences of elementary
moves connecting E to E′ are related by a sequence of the two movie moves defined above.

Proof. (Sketch) Consider a two parameter family of diffeomorphisms (one parameter family of
isotopies) of ∂X. Up to homotopy, such a family is homotopic to a family which can be decomposed
into small families which are either (a) supported away from E, (b) have boundaries corresponding
to the two movie moves above. Finally, observe that the space of E’s is simply connected. (This
fails for n = 1.)

For n = 1 we have to check an additional “global” relations corresponding to rotating the
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0-sphere E around the 1-sphere ∂X. But if n = 1, then we are in the case of ordinary algebroids
and bimodules, and this is just the well-known “Frobenius reciprocity” result for bimodules [Bis97].

We have now defined S(X; c) for any n+1-ball X with boundary decoration c. We must also
define, for any homeomorphism X → X ′, an action f : S(X; c)→ S(X ′, f(c)). Choosing an equator
E ⊂ ∂X we have

S(X; c) ∼= S(X; c;E)
def
= homS(Ec)(S(∂−Xc),S(∂+Xc)).

We define f : S(X; c)→ S(X ′, f(c)) to be the tautological map

f : S(X; c;E)→ S(X ′; f(c); f(E)).

It is easy to show that this is independent of the choice of E. Note also that this map depends
only on the restriction of f to ∂X. In particular, if F : X → X is the identity on ∂X then f acts
trivially, as required by Axiom 6.1.10.

We define product n+1-morphisms to be identity maps of modules.
To define (binary) composition of n+1-morphisms, choose the obvious common equator then

compose the module maps. The proof that this composition rule is associative is similar to the
proof of Lemma 6.7.1.

7 The blob complex for A∞ n-categories

Given an A∞ n-category C and an n-manifold M , we make the anticlimactically tautological
definition of the blob complex B∗(M ; C) to be the homotopy colimit C−→(M) of §6.3.

We will show below in Corollary 7.1.3 that when C is obtained from a system of fields D as
the blob complex of an n-ball (see Example 6.2.8), C−→(M) is homotopy equivalent to our original

definition of the blob complex B∗(M ;D).

7.1 A product formula

Given an n-dimensional system of fields E and a n−k-manifold F , recall from Example 6.2.8 that
there is an A∞ k-category CF defined by CF (X) = E(X×F ) if dim(X) < k and CF (X) = B∗(X×F ; E)
if dim(X) = k.

Theorem 7.1.1. Let Y be a k-manifold. Then there is a homotopy equivalence between “old-
fashioned” (blob diagrams) and “new-fangled” (hocolimit) blob complexes

B∗(Y × F ) ' CF−→(Y ).

Proof. We will use the concrete description of the homotopy colimit from §6.3.
First we define a map

ψ : CF−→(Y )→ B∗(Y × F ;C).

On 0-simplices of the hocolimit we just glue together the various blob diagrams on Xi×F (where Xi

is a component of a permissible decomposition of Y ) to get a blob diagram on Y × F . For simplices
of dimension 1 and higher we define the map to be zero. It is easy to check that this is a chain map.

In the other direction, we will define a subcomplex G∗ ⊂ B∗(Y × F ;C) and a map

φ : G∗ → CF−→(Y ).
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Figure 33: Connecting K and K ′ via L

Given a decomposition K of Y into k-balls Xi, let K×F denote the corresponding decomposition
of Y × F into the pieces Xi × F .

Let G∗ ⊂ B∗(Y ×F ;C) be the subcomplex generated by blob diagrams a such that there exists a
decomposition K of Y such that a splits along K×F . It follows from Lemma 5.1.1 that B∗(Y ×F ;C)
is homotopic to a subcomplex of G∗. (If the blobs of a are small with respect to a sufficiently fine
cover then their projections to Y are contained in some disjoint union of balls.) Note that the image
of ψ is equal to G∗.

We will define φ : G∗ → CF−→(Y ) using the method of acyclic models. Let a be a generator of G∗.

Let D(a) denote the subcomplex of CF−→(Y ) generated by all (b,K) such that a splits along K0 × F
and b is a generator appearing in an iterated boundary of a (this includes a itself). (Recall that
K = (K0, . . . ,Kl) denotes a chain of decompositions; see §6.3.) By (b,K) we really mean (b],K),
where b] is b split according to K0 × F . To simplify notation we will just write plain b instead of
b]. Roughly speaking, D(a) consists of 0-simplices which glue up to give a (or one of its iterated
boundaries), 1-simplices which connect all the 0-simplices, 2-simplices which kill the homology
created by the 1-simplices, and so on. More formally,

Lemma 7.1.2. D(a) is acyclic.

Proof. We will prove acyclicity in the first couple of degrees, and leave the general case to the
reader.

Let K and K ′ be two decompositions (0-simplices) of Y compatible with a. We want to find
1-simplices which connect K and K ′. We might hope that K and K ′ have a common refinement,
but this is not necessarily the case. (Consider the x-axis and the graph of y = x2 sin(1/x) in R2.)
However, we can find another decomposition L such that L shares common refinements with both
K and K ′. Let KL and K ′L denote these two refinements. Then 1-simplices associated to the four
anti-refinements KL→ K, KL→ L, K ′L→ L and K ′L→ K ′ give the desired chain connecting
(a,K) and (a,K ′) (see Figure 33).

Consider a different choice of decomposition L′ in place of L above. This leads to a cycle of
1-simplices. We want to find 2-simplices which fill in this cycle. Choose a decomposition M which
has common refinements with each of K, KL, L, K ′L, K ′, K ′L′, L′ and KL′. (We also also require
that KLM antirefines to KM , etc.) Then we have 2-simplices, as shown in Figure 34, which do the
trick. (Each small triangle in Figure 34 can be filled with a 2-simplex.)

Continuing in this way we see that D(a) is acyclic.

We are now in a position to apply the method of acyclic models to get a map φ : G∗ → CF−→(Y ).

We may assume that φ(a) has the form (a,K) + r, where (a,K) is a 0-simplex and r is a sum of
simplices of dimension 1 or higher.

We now show that φ ◦ ψ and ψ ◦ φ are homotopic to the identity.
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Figure 34: Filling in K-KL-L-K ′L-K ′-K ′L′-L′-KL′-K

First, ψ ◦ φ is the identity on the nose:

ψ(φ(a)) = ψ((a,K)) + ψ(r) = a+ 0.

Roughly speaking, (a,K) is just a chopped up into little pieces, and ψ glues those pieces back
together, yielding a. We have ψ(r) = 0 since ψ is zero on (≥ 1)-simplices.

Second, φ ◦ ψ is the identity up to homotopy by another argument based on the method of
acyclic models. To each generator (b,K) of G∗ we associate the acyclic subcomplex D(b) defined
above. Both the identity map and φ ◦ ψ are compatible with this collection of acyclic subcomplexes,
so by the usual method of acyclic models argument these two maps are homotopic.

This concludes the proof of Theorem 7.1.1.

If Y has dimension k−m, then we have an m-category CY×F whose value at a j-ball X is either
E(X × Y × F ) (if j < m) or B∗(X × Y × F ) (if j = m). (See Example 6.2.8.) Similarly we have an
m-category whose value at X is CF−→(X × Y ). These two categories are equivalent, but since we do

not define functors between disk-like n-categories in this paper we are unable to say precisely what
“equivalent” means in this context. We hope to include this stronger result in a future paper.

Taking F in Theorem 7.1.1 to be a point, we obtain the following corollary.

Corollary 7.1.3. Let E be a system of fields (with local relations) and let CE be the A∞ n-category
obtained from E by taking the blob complex of balls. Then for all n-manifolds Y the old-fashioned
and new-fangled blob complexes are homotopy equivalent:

BE∗ (Y ) ' CE−→(Y ).
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Theorem 7.1.1 extends to the case of general fiber bundles

F → E → Y,

an indeed even to the case of general maps

M → Y.

We outline two approaches to these generalizations. The first is somewhat tautological, while the
second is more amenable to calculation.

We can generalize the definition of a k-category by replacing the categories of j-balls (j ≤ k)
with categories of j-balls D equipped with a map p : D → Y (c.f. [ST04]). Call this a k-category
over Y . A fiber bundle F → E → Y gives an example of a k-category over Y : assign to p : D → Y
the blob complex B∗(p∗(E)), if dim(D) = k, or the fields E(p∗(E)), if dim(D) < k. (p∗(E) denotes
the pull-back bundle over D.) Let FE denote this k-category over Y . We can adapt the homotopy
colimit construction (based decompositions of Y into balls) to get a chain complex FE−→(Y ). The

proof of Theorem 7.1.1 goes through essentially unchanged to show that

Theorem 7.1.4. Let F → E → Y be a fiber bundle and let FE be the k-category over Y defined
above. Then

B∗(E) ' FE−→(Y ).

We can generalize this result still further by noting that it is not really necessary for the
definition of FE that E → Y be a fiber bundle. Let M → Y be a map, with dim(M) = n and
dim(Y ) = k. Call a map Dj → Y “good” with respect to M if the fibered product D×̃M is a
manifold of dimension n− k + j with a collar structure along the boundary of D. (If D → Y is an
embedding then D×̃M is just the part of M lying above D.) We can define a k-category FM based
on maps of balls into Y which a re good with respect to M . We can again adapt the homotopy
colimit construction to get a chain complex FM−−→(Y ). The proof of Theorem 7.1.1 again goes through

essentially unchanged to show that

Theorem 7.1.5. Let M → Y be a map of manifolds and let FM be the k-category over Y defined
above. Then

B∗(M) ' FM−−→(Y ).

In the second approach we use a decorated colimit (as in §6.7) and various sphere modules based
on F → E → Y or M → Y , instead of an undecorated colimit with fancier k-categories over Y .
Information about the specific map to Y has been taken out of the categories and put into sphere
modules and decorations.

Let F → E → Y be a fiber bundle as above. Choose a decomposition Y = ∪Xi such that the
restriction of E to Xi is homeomorphic to a product F ×Xi, and choose trivializations of these
products as well.

Let F be the k-category associated to F . To each codimension-1 face Xi∩Xj we have a bimodule
(S0-module) for F . More generally, to each codimension-m face we have an Sm−1-module for a
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(k−m+1)-category associated to the (decorated) link of that face. We can decorate the strata of the
decomposition of Y with these sphere modules and form a colimit as in §6.7. This colimit computes
B∗(E).

There is a similar construction for general maps M → Y .

7.2 A gluing theorem

Next we prove a gluing theorem. Let X be a closed k-manifold with a splitting X = X ′1 ∪Y X ′2. We
will need an explicit collar on Y , so rewrite this as X = X1 ∪ (Y ×J)∪X2. Given this data we have:

• An A∞ n−k-category B(X), which assigns to an m-ball D fields on D ×X (for m+ k < n)
or the blob complex B∗(D ×X; c) (for m+ k = n). (See Example 6.2.8.)

• An A∞ n−k+1-category B(Y ), defined similarly.

• Two B(Y ) modules B(X1) and B(X2), which assign to a marked m-ball (D,H) either fields on
(D×Y )∪ (H ×Xi) (if m+k < n) or the blob complex B∗((D×Y )∪ (H ×Xi)) (if m+k = n).
(See Example 6.4.13.)

• The tensor product B(X1)⊗B(Y ),J B(X2), which is an A∞ n−k-category. (See §6.5.)

It is the case that the n−k-categories B(X) and B(X1)⊗B(Y ),J B(X2) are equivalent for all k,
but since we do not develop a definition of functor between n-categories in this paper, we cannot
state this precisely. (It will appear in a future paper.) So we content ourselves with

Theorem 7.2.1. When k = n above, B(X) is homotopy equivalent to B(X1)⊗B(Y ),J B(X2).

Proof. The proof is similar to that of Theorem 7.1.1. We give a short sketch with emphasis on the
differences from the proof of Theorem 7.1.1.

Let T denote the chain complex B(X1)⊗B(Y ),J B(X2). Recall that this is a homotopy colimit
based on decompositions of the interval J .

We define a map ψ : T → B∗(X). On 0-simplices it is given by gluing the pieces together to get
a blob diagram on X. On simplices of dimension 1 and greater ψ is zero.

The image of ψ is the subcomplex G∗ ⊂ B(X) generated by blob diagrams which split over some
decomposition of J . It follows from Lemma 5.1.1 that B∗(X) is homotopic to a subcomplex of G∗.

Next we define a map φ : G∗ → T using the method of acyclic models. As in the proof of
Theorem 7.1.1, we assign to a generator a of G∗ an acyclic subcomplex which is (roughly) ψ−1(a).
The proof of acyclicity is easier in this case since any pair of decompositions of J have a common
refinement.

The proof that these two maps are inverse to each other is the same as in Theorem 7.1.1.

7.3 Reconstructing mapping spaces

The next theorem shows how to reconstruct a mapping space from local data. Let T be a topological
space, let M be an n-manifold, and recall the A∞ n-category π∞≤n(T ) of Example 6.2.7. Think of
π∞≤n(T ) as encoding everything you would ever want to know about spaces of maps of k-balls into T
(k ≤ n). To simplify notation, let T = π∞≤n(T ).
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Theorem 7.3.1. The blob complex for M with coefficients in the fundamental A∞ n-category for
T is quasi-isomorphic to singular chains on maps from M to T .

BT (M) ' C∗(Maps(M → T )).

Remark. Lurie has shown in [Lur09, Theorem 3.8.6] that the topological chiral homology of an
n-manifold M with coefficients in a certain En algebra constructed from T recovers the same space
of singular chains on maps from M to T , with the additional hypothesis that T is n− 1-connected.
This extra hypothesis is not surprising, in view of the idea described in Example 6.2.10 that an En
algebra is roughly equivalent data to an A∞ n-category which is trivial at levels 0 through n− 1.
Ricardo Andrade also told us about a similar result.

Proof. The proof is again similar to that of Theorem 7.1.1.
We begin by constructing chain map ψ : BT (M)→ C∗(Maps(M → T )).
Recall that the 0-simplices of the homotopy colimit BT (M) are a direct sum of chain complexes

with the summands indexed by decompositions of M which have their n−1-skeletons labeled by
n−1-morphisms of T . Since T = π∞≤n(T ), this means that the summands are indexed by pairs
(K,ϕ), where K is a decomposition of M and ϕ is a continuous map from the n−1-skeleton of K to
T . The summand indexed by (K,ϕ) is ⊗

b

D∗(b, ϕ),

where b runs through the n-cells of K and D∗(b, ϕ) denotes chains of maps from b to T compatible
with ϕ. We can take the product of these chains of maps to get chains of maps from all of M to K.
This defines ψ on 0-simplices.

We define ψ to be zero on (≥ 1)-simplices. It is not hard to see that this defines a chain map
from BT (M) to C∗(Maps(M → T )).

The image of ψ is the subcomplex G∗ ⊂ C∗(Maps(M → T )) generated by families of maps whose
support is contained in a disjoint union of balls. It follows from Lemma B.0.5 that C∗(Maps(M → T ))
is homotopic to a subcomplex of G∗.

We will define a map φ : G∗ → BT (M) via acyclic models. Let a be a generator of G∗. Define
D(a) to be the subcomplex of BT (M) generated by all pairs (b,K), where b is a generator appearing
in an iterated boundary of a and K is an index of the homotopy colimit BT (M). (See the proof of
Theorem 7.1.1 for more details.) The same proof as of Lemma 7.1.2 shows that D(a) is acyclic. By
the usual acyclic models nonsense, there is a (unique up to homotopy) map φ : G∗ → BT (M) such
that φ(a) ∈ D(a). Furthermore, we may choose φ such that for all a

φ(a) = (a,K) + r

where (a,K) is a 0-simplex and r is a sum of simplices of dimension 1 and greater.
It is now easy to see that ψ ◦ φ is the identity on the nose. Another acyclic models argument

shows that φ ◦ψ is homotopic to the identity. (See the proof of Theorem 7.1.1 for more details.)
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Figure 35: Little bigons, though of as encoding surgeries

8 Higher-dimensional Deligne conjecture

In this section we prove a higher dimensional version of the Deligne conjecture about the action of
the little disks operad on Hochschild cochains. The first several paragraphs lead up to a precise
statement of the result (Theorem 8.0.2 below). Then we give the proof.

The usual Deligne conjecture (proved variously in [KS00, VG95, Tam03, GJ94, Vor00]) gives a
map

C∗(LDk)⊗
k copies︷ ︸︸ ︷

Hoch∗(C,C)⊗ · · · ⊗Hoch∗(C,C)→ Hoch∗(C,C).

Here LDk is the k-th space of the little disks operad and Hoch∗(C,C) denotes Hochschild cochains.
We now reinterpret C∗(LDk) and Hoch∗(C,C) in such a way as to make the generalization to

higher dimensions clear.
The little disks operad is homotopy equivalent to configurations of little bigons inside a big

bigon, as shown in Figure 35. We can think of such a configuration as encoding a sequence of
surgeries, starting at the bottommost interval of Figure 35 and ending at the topmost interval. The
surgeries correspond to the k bigon-shaped “holes”. We remove the bottom interval of each little
bigon and replace it with the top interval. To convert this topological operation to an algebraic one,
we need, for each hole, an element of hom(BC∗ (Ibottom),BC∗ (Itop)), which is homotopy equivalent to
Hoch∗(C,C). So for each fixed configuration we have a map

hom(BC∗ (I),BC∗ (I))⊗ · · · ⊗ hom(BC∗ (I),BC∗ (I))→ hom(BC∗ (I),BC∗ (I)).

If we deform the configuration, corresponding to a 1-chain in C∗(LDk), we get a homotopy between
the maps associated to the endpoints of the 1-chain. Similarly, higher-dimensional chains in C∗(LDk)
give rise to higher homotopies.

We emphasize that in hom(BC∗ (I),BC∗ (I)) we are thinking of BC∗ (I) as a module for the A∞
1-category associated to ∂I, and hom means the morphisms of such modules as defined in §6.6.

It should now be clear how to generalize this to higher dimensions. In the sequence-of-surgeries
description above, we never used the fact that the manifolds involved were 1-dimensional. So we
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Figure 36: An n-dimensional surgery cylinder

will define, below, the operad of n-dimensional surgery cylinders, analogous to mapping cylinders of
homeomorphisms (Figure 36). (Note that n is the dimension of the manifolds we are doing surgery
on; the surgery cylinders are n+1-dimensional.)

An n-dimensional surgery cylinder (n-SC for short) consists of:

• “Lower” n-manifolds M0, . . . ,Mk and “upper” n-manifolds N0, . . . , Nk, with ∂Mi = ∂Ni = Ei
for all i. We call M0 and N0 the outer boundary and the remaining Mi’s and Ni’s the inner
boundaries.

• Additional manifolds R1, . . . , Rk, with ∂Ri = E0 ∪ ∂Mi = E0 ∪ ∂Ni.

• Homeomorphisms

f0 : M0 → R1 ∪M1

fi : Ri ∪Ni → Ri+1 ∪Mi+1 for 1 ≤ i ≤ k − 1

fk : Rk ∪Nk → N0.

Each fi should be the identity restricted to E0.

We can think of the above data as encoding the union of the mapping cylinders C(f0), . . . , C(fk),
with C(fi) glued to C(fi+1) along Ri+1 (see Figure 37). We regard two such surgery cylinders as
the same if there is a homeomorphism between them which is the identity on the boundary and
which preserves the 1-dimensional fibers coming from the mapping cylinders. More specifically, we
impose the following two equivalence relations:

• If g : Ri → R′i is a homeomorphism, we can replace

(. . . , Ri−1, Ri, Ri+1, . . .) → (. . . , Ri−1, R′i, Ri+1, . . .)

(. . . , fi−1, fi, . . .) → (. . . , g ◦ fi−1, fi ◦ g−1, . . .),

leaving the Mi and Ni fixed. (Keep in mind the case R′i = Ri.) (See Figure 38.)
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Figure 37: An n-dimensional surgery cylinder constructed from mapping cylinders

Ri

fi

fi−1

→
g◦fi−1

fi◦g
Ri

Figure 38: Conjugating by a homeomorphism.

• If Mi = M ′i tM ′′i and Ni = N ′i tN ′′i (and there is a compatible disjoint union of ∂M = ∂N),
we can replace

(. . . ,Mi−1,Mi,Mi+1, . . .) → (. . . ,Mi−1,M ′i ,M
′′
i ,Mi+1, . . .)

(. . . , Ni−1, Ni, Ni+1, . . .) → (. . . , Ni−1, N ′i , N
′′
i , Ni+1, . . .)

(. . . , Ri−1, Ri, Ri+1, . . .) → (. . . , Ri−1, Ri ∪M ′′i , Ri ∪N ′i , Ri+1, . . .)

(. . . , fi−1, fi, . . .) → (. . . , fi−1, id, fi, . . .).

(See Figure 39.)

Note that the second equivalence increases the number of holes (or arity) by 1. We can make a
similar identification with the roles of M ′i and M ′′i reversed. In terms of the “sequence of surgeries”
picture, this says that if two successive surgeries do not overlap, we can perform them in reverse
order or simultaneously.

There is an operad structure on n-dimensional surgery cylinders, given by gluing the outer
boundary of one cylinder into one of the inner boundaries of another cylinder. We leave it to the
reader to work out a more precise statement in terms of Mi’s, fi’s etc.

For fixed M = (M0, . . . ,Mk) and N = (N0, . . . , Nk), we let SCn
MN

denote the topological space
of all n-dimensional surgery cylinders as above. (Note that in different parts of SCn

MN
the Mi’s and

79



Ni Ni

Mi Mi

←

(Ni Ni

Mi Mi )

→

Ni Ni

Mi Mi

Figure 39: Changing the order of a surgery.

Ni’s are ordered differently.) The topology comes from the spaces

Homeo(M0 → R1 ∪M1)×Homeo(R1 ∪N1 → R2 ∪M2)× · · · ×Homeo(Rk ∪Nk → N0)

and the above equivalence relations. We will denote the typical element of SCn
MN

by f = (f0, . . . , fk).

The n-SC operad contains the little n+1-balls operad. Roughly speaking, given a configuration
of k little n+1-balls in the standard n+1-ball, we fiber the complement of the balls by vertical
intervals and let Mi [Ni] be the southern [northern] hemisphere of the i-th ball. More precisely,
let x1, . . . , xn+1 be the coordinates of Rn+1. Let z be a point of the k-th space of the little n+1-
balls operad, with little balls D1, . . . , Dk inside the standard n+1-ball. We assume the Di’s are
ordered according to the xn+1 coordinate of their centers. Let π : Rn+1 → Rn be the projection
corresponding to xn+1. Let B ⊂ Rn be the standard n-ball. Let Mi and Ni be B for all i. Identify
π(Di) with B (a.k.a. Mi or Ni) via translations and dilations (no rotations). Let Ri = B \ π(Di).
Let fi = id for all i. We have now defined a map from the little n+1-balls operad to the n-SC
operad, with contractible fibers. (The fibers correspond to moving the Di’s in the xn+1 direction
without changing their ordering.)

Another familiar subspace of the n-SC operad is Homeo(M0 → N0), which corresponds to case
k = 0 (no holes). In this case the surgery cylinder is just a single mapping cylinder.

Let f ∈ SCn
MN

. Let hom(B∗(Mi),B∗(Ni)) denote the morphisms from B∗(Mi) to B∗(Ni), as
modules of the A∞ 1-category B∗(Ei). We define a map

p(f) : hom(B∗(M1),B∗(N1))⊗ · · · ⊗ hom(B∗(Mk),B∗(Nk))→ hom(B∗(M0),B∗(N0)).

Given αi ∈ hom(B∗(Mi),B∗(Ni)), we define p(f) to be the composition

B∗(M0)
f0→ B∗(R1 ∪M1)

1⊗α1→ B∗(R1 ∪N1)
f1→ B∗(R2 ∪M2)

1⊗α2→ · · · 1⊗αk→ B∗(Rk ∪Nk)
fk→ B∗(N0)

(Recall that the maps 1⊗ αi were defined in §6.6.) It is easy to check that the above definition is
compatible with the equivalence relations and also the operad structure. We can reinterpret the
above as a chain map

p : C0(SC
n
MN

)⊗ hom(B∗(M1),B∗(N1))⊗ · · · ⊗ hom(B∗(Mk),B∗(Nk))→ hom(B∗(M0),B∗(N0)).
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The main result of this section is that this chain map extends to the full singular chain complex
C∗(SCnMN

).

Theorem 8.0.2. There is a collection of chain maps

C∗(SCnM,N
)⊗ hom(B∗(M1),B∗(N1))⊗ · · · ⊗ hom(B∗(Mk),B∗(Nk))→ hom(B∗(M0),B∗(N0))

which satisfy the operad compatibility conditions. On C0(SC
n
MN

) this agrees with the chain map p
defined above. When k = 0, this coincides with the C∗(Homeo(M0 → N0)) action of §5.

If, in analogy to Hochschild cochains, we define elements of hom(M,N) to be “blob cochains”,
we can summarize the above proposition by saying that the n-SC operad acts on blob cochains.
As noted above, the n-SC operad contains the little n+1-balls operad, so this constitutes a higher
dimensional version of the Deligne conjecture for Hochschild cochains and the little 2-disks operad.

Proof. As described above, SCn
M,N

is equal to the disjoint union of products of homeomorphism

spaces, modulo some relations. By Theorem 5.2.1 and the Eilenberg-Zilber theorem, we have for
each such product P a chain map

C∗(P )⊗ hom(B∗(M1),B∗(N1))⊗ · · · ⊗ hom(B∗(Mk),B∗(Nk))→ hom(B∗(M0),B∗(N0)).

It suffices to show that the above maps are compatible with the relations whereby SCn
M,N

is

constructed from the various P ’s. This in turn follows easily from the fact that the actions of
C∗(Homeo(· → ·)) are local (compatible with gluing) and associative.

We note that even when n = 1, the above theorem goes beyond an action of the little disks
operad. Mi could be a disjoint union of intervals, and Ni could connect the end points of the
intervals in a different pattern from Mi. The genus of the surface associated to the surgery cylinder
could be greater than zero.

A The method of acyclic models

Let F∗ and G∗ be chain complexes. Assume Fk has a basis {xkj} (that is, F∗ is free and we
have specified a basis). (In our applications, {xkj} will typically be singular k-simplices or k-blob

diagrams.) For each basis element xkj assume we have specified a “target” Dkj
∗ ⊂ G∗.

We say that a chain map f : F∗ → G∗ is compatible with the above data (basis and targets) if

f(xkj) ∈ Dkj
∗ for all k and j. Let Compat(D•∗) denote the subcomplex of maps from F∗ to G∗ such

that the image of each higher homotopy applied to xkj lies in Dkj
∗ .

Theorem A.0.3 (Acyclic models). Suppose

• Dk−1,l
∗ ⊂ Dkj

∗ whenever xk−1,l occurs in ∂xkj with non-zero coefficient;

• D0j
0 is non-empty for all j; and

• Dkj
∗ is (k−1)-acyclic (i.e. Hk−1(D

kj
∗ ) = 0) for all k, j .

Then Compat(D•∗) is non-empty. If, in addition,
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• Dkj
∗ is m-acyclic for k ≤ m ≤ k + i and for all k, j,

then Compat(D•∗) is i-connected.

Proof. (Sketch) This is a standard result; see, for example, [Spa66, Chapter 4].
We will build a chain map f ∈ Compat(D•∗) inductively. Choose f(x0j) ∈ D0j

0 for all j

(possible since D0j
0 is non-empty). Choose f(x1j) ∈ D1j

1 such that ∂f(x1j) = f(∂x1j) (possible since

D0l
∗ ⊂ D1j

∗ for each x0l in ∂x1j and D1j
∗ is 0-acyclic). Continue in this way, choosing f(xkj) ∈ Dkj

k

such that ∂f(xkj) = f(∂xkj) We have now constructed f ∈ Compat(D•∗), proving the first claim of
the theorem.

Now suppose that Dkj
∗ is k-acyclic for all k and j. Let f and f ′ be two chain maps (0-chains)

in Compat(D•∗). Using a technique similar to above we can construct a homotopy (1-chain) in

Compat(D•∗) between f and f ′. Thus Compat(D•∗) is 0-connected. Similarly, if Dkj
∗ is (k+i)-acyclic

then we can show that Compat(D•∗) is i-connected.

B Adapting families of maps to open covers

Let X and T be topological spaces, with X compact. Let U = {Uα} be an open cover of X which
affords a partition of unity {rα}. (That is, rα : X → [0, 1]; rα(x) = 0 if x /∈ Uα; for fixed x, rα(x) 6= 0
for only finitely many α; and

∑
α rα = 1.) Since X is compact, we will further assume that rα = 0

(globally) for all but finitely many α.
Consider C∗(Maps(X → T )), the singular chains on the space of continuous maps from X to T .

Ck(Maps(X → T )) is generated by continuous maps

f : P ×X → T,

where P is some convex linear polyhedron in Rk. Recall that f is supported on S ⊂ X if f(p, x)
does not depend on p when x /∈ S, and that f is adapted to U if f is supported on the union of at
most k of the Uα’s. A chain c ∈ C∗(Maps(X → T )) is adapted to U if it is a linear combination of
generators which are adapted.

Lemma B.0.4. Let f : P ×X → T , as above. Then there exists

F : I × P ×X → T

such that

1. F (0, ·, ·) = f .

2. We can decompose P = ∪iDi so that the restrictions F (1, ·, ·) : Di ×X → T are all adapted
to U .

3. If f has support S ⊂ X, then F : (I × P )×X → T (a k+1-parameter family of maps) also
has support S. Furthermore, if Q is a convex linear subpolyhedron of ∂P and f restricted to
Q has support S′ ⊂ X, then F : (I ×Q)×X → T also has support S′.
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4. Suppose both X and T are smooth manifolds, metric spaces, or PL manifolds, and let X
denote the subspace of Maps(X → T ) consisting of immersions or of diffeomorphisms (in the
smooth case), bi-Lipschitz homeomorphisms (in the metric case), or PL homeomorphisms (in
the PL case). If f is smooth, Lipschitz or PL, as appropriate, and f(p, ·) : X → T is in X for
all p ∈ P then F (t, p, ·) is also in X for all t ∈ I and p ∈ P .

Proof. Our homotopy will have the form

F : I × P ×X → X

(t, p, x) 7→ f(u(t, p, x), x)

for some function
u : I × P ×X → P.

First we describe u, then we argue that it makes the conclusions of the lemma true.
For each cover index α choose a cell decomposition Kα of P such that the various Kα are in

general position with respect to each other. If we are in one of the cases of item 4 of the lemma,
also choose Kα sufficiently fine as described below.

Let L be a common refinement of all the Kα’s. Let L̃ denote the handle decomposition of P
corresponding to L. Each i-handle C of L̃ has an i-dimensional tangential coordinate and, more
importantly for our purposes, a k−i-dimensional normal coordinate. We will typically use the same
notation for i-cells of L and the corresponding i-handles of L̃.

For each (top-dimensional) k-cell C of each Kα, choose a point p(C) ∈ C ⊂ P . If C meets a
subpolyhedron Q of ∂P , we require that p(C) ∈ Q. (It follows that if C meets both Q and Q′, then
p(C) ∈ Q ∩Q′. Ensuring this is possible corresponds to some mild constraints on the choice of the
Kα.)

Let D be a k-handle of L̃. For each α let C(D,α) be the k-cell of Kα which contains D and let
p(D,α) = p(C(D,α)).

For p ∈ D we define

u(t, p, x) = (1− t)p+ t
∑
α

rα(x)p(D,α).

(Recall that P is a convex linear polyhedron, so the weighted average of points of P makes sense.)
Thus far we have defined u(t, p, x) when p lies in a k-handle of L̃. We will now extend u

inductively to handles of index less than k.
Let E be a k−1-handle. E is homeomorphic to Bk−1 × [0, 1], and meets the k-handles at

Bk−1 × {0} and Bk−1 × {1}. Let η : E → [0, 1], η(x, s) = s be the normal coordinate of E. Let
D0 and D1 be the two k-handles of L̃ adjacent to E. There is at most one index β such that
C(D0, β) 6= C(D1, β). (If there is no such index, choose β arbitrarily.) For p ∈ E, define

u(t, p, x) = (1− t)p+ t

∑
α 6=β

rα(x)p(D0, α) + rβ(x)(η(p)p(D0, β) + (1− η(p))p(D1, β))

 .

Now for the general case. Let E be a k−j-handle. Let D0, . . . , Da be the k-handles adjacent to
E. There is a subset of cover indices N , of cardinality j, such that if α /∈ N then p(Du, α) = p(Dv, α)
for all 0 ≤ u, v ≤ a. For fixed β ∈ N let {qβi} be the set of values of p(Du, β) for 0 ≤ u ≤ a. Recall
the product structure E = Bk−j ×Bj . Inductively, we have defined functions ηβi : ∂Bj → [0, 1] such
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that
∑

i ηβi = 1 for all β ∈ N . Choose extensions of ηβi to all of Bj . Via the projection E → Bj ,
regard ηβi as a function on E. Now define, for p ∈ E,

(B.1) u(t, p, x) = (1− t)p+ t

∑
α/∈N

rα(x)p(D0, α) +
∑
β∈N

rβ(x)

(∑
i

ηβi(p) · qβi
) .

This completes the definition of u : I × P ×X → P . The formulas above are consistent: for p at
the boundary between a k − j-handle and a k − (j + 1)-handle the corresponding expressions in
Equation (B.1) agree, since one of the normal coordinates becomes 0 or 1. Note that if Q ⊂ ∂P is a
convex linear subpolyhedron, then u(I ×Q×X) ⊂ Q.

Next we verify that u affords F the properties claimed in the statement of the lemma.
Since u(0, p, x) = p for all p ∈ P and x ∈ X, F (0, p, x) = f(p, x) for all p and x. Therefore F is

a homotopy from f to something.

Next we show that for each handle D of J , F (1, ·, ·) : D ×X → X is a singular cell adapted to
U . Let k − j be the index of D. Referring to Equation (B.1), we see that F (1, p, x) depends on p
only if rβ(x) 6= 0 for some β ∈ N , i.e. only if x ∈ ⋃β∈N Uβ . Since the cardinality of N is j which is
less than or equal to k, this shows that F (1, ·, ·) : D ×X → X is adapted to U .

Next we show that F does not increase supports. If f(p, x) = f(p′, x) for all p, p′ ∈ P , then

F (t, p, x) = f(u(t, p, x), x) = f(u(t′, p′, x), x) = F (t′, p′, x)

for all (t, p) and (t′, p′) in I × P . Similarly, if f(q, x) = f(q′, x) for all q, q′ ∈ Q ⊂ ∂P , then

F (t, q, x) = f(u(t, q, x), x) = f(u(t′, q′, x), x) = F (t′, q′, x)

for all (t, q) and (t′, q′) in I ×Q. (Recall that we arranged above that u(I ×Q×X) ⊂ Q.)

Now for claim 4 of the lemma. Assume that X and T are smooth manifolds and that f is
a smooth family of diffeomorphisms. We must show that we can choose the Kα’s and u so that
F (t, p, ·) is a diffeomorphism for all t and p. It suffices to show that the derivative ∂F

∂x (t, p, x) is
non-singular for all (t, p, x). We have

∂F

∂x
=
∂f

∂x
+
∂f

∂p

∂u

∂x
.

Since f is a family of diffeomorphisms and X and P are compact, ∂f
∂x is non-singular and bounded

away from zero. Also, since f is smooth ∂f
∂p is bounded. Thus if we can insure that ∂u

∂x is sufficiently

small, we are done. It follows from Equation (B.1) above that ∂u
∂x depends on ∂rα

∂x (which is bounded)
and the differences amongst the various p(D0, α)’s and qβi’s. These differences are small if the cell
decompositions Kα are sufficiently fine. This completes the proof that F is a homotopy through
diffeomorphisms.

If we replace “diffeomorphism” with “immersion” in the above paragraph, the argument goes
through essentially unchanged.

Next we consider the case where f is a family of bi-Lipschitz homeomorphisms. Recall that we
assume that f is Lipschitz in the P direction as well. The argument in this case is similar to the one
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above for diffeomorphisms, with bounded partial derivatives replaced by Lipschitz constants. Since
X and P are compact, there is a universal bi-Lipschitz constant that works for f(p, ·) for all p. By
choosing the cell decompositions Kα sufficiently fine, we can insure that u has a small Lipschitz
constant in the X direction. This allows us to show that F (t, p, ·) has a bi-Lipschitz constant close
to the universal bi-Lipschitz constant for f .

Since PL homeomorphisms are bi-Lipschitz, we have established this last remaining case of claim
4 of the lemma as well.

Lemma B.0.5. Let X∗ be any of C∗(Maps(X → T )) or singular chains on the subspace of
Maps(X → T ) consisting of immersions, diffeomorphisms, bi-Lipschitz homeomorphisms or PL
homeomorphisms. Let G∗ ⊂ X∗ denote the chains adapted to an open cover U of X. Then G∗ is a
strong deformation retract of X∗.

Proof. It suffices to show that given a generator f : P ×X → T of Xk with ∂f ∈ Gk−1 there exists
h ∈ Xk+1 with ∂h = f +g and g ∈ Gk. This is exactly what Lemma B.0.4 gives us. More specifically,
let ∂P =

∑
Qi, with each Qi ∈ Gk−1. Let F : I × P ×X → T be the homotopy constructed in

Lemma B.0.4. Then ∂F is equal to f plus F (1, ·, ·) plus the restrictions of F to I ×Qi. Part 2 of
Lemma B.0.4 says that F (1, ·, ·) ∈ Gk, while part 3 of Lemma B.0.4 says that the restrictions to
I ×Qi are in Gk.

C Comparing n-category definitions

In §2.2 we showed how to construct a topological n-category from a traditional n-category; the
morphisms of the topological n-category are string diagrams labeled by the traditional n-category.
In this appendix we sketch how to go the other direction, for n = 1 and 2. The basic recipe, given
a disk-like n-category C, is to define the k-morphisms of the corresponding traditional n-category
to be C(Bk), where Bk is the standard k-ball. One must then show that the axioms of §6.1 imply
the traditional n-category axioms. One should also show that composing the two arrows (between
traditional and disk-like n-categories) yields the appropriate sort of equivalence on each side. Since
we haven’t given a definition for functors between disk-like n-categories (the paper is already too
long!), we do not pursue this here.

We emphasize that we are just sketching some of the main ideas in this appendix — it falls well
short of proving the definitions are equivalent.

C.1 1-categories over Set or Vect

Given a disk-like 1-category X we construct a 1-category in the conventional sense, c(X ). This
construction is quite straightforward, but we include the details for the sake of completeness,
because it illustrates the role of structures (e.g. orientations, spin structures, etc) on the underlying
manifolds, and to shed some light on the n = 2 case, which we describe in §C.2.

Let Bk denote the standard k-ball. Let the objects of c(X ) be c(X )0 = X (B0) and the morphisms
of c(X ) be c(X )1 = X (B1). The boundary and restriction maps of X give domain and range maps
from c(X )1 to c(X )0.

Choose a homeomorphism B1 ∪pt B1 → B1. Define composition in c(X ) to be the induced map
c(X )1 × c(X )1 → c(X )1 (defined only when range and domain agree). By isotopy invariance in X ,
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any other choice of homeomorphism gives the same composition rule. Also by isotopy invariance,
composition is strictly associative.

Given a ∈ c(X )0, define 1a
def
= a × B1. By extended isotopy invariance in X , this has the

expected properties of an identity morphism.
If the underlying manifolds for X have further geometric structure, then we obtain certain

functors. The base case is for oriented manifolds, where we obtain no extra algebraic data.
For 1-categories based on unoriented manifolds, there is a map ∗ : c(X )1 → c(X )1 coming from

X applied to an orientation-reversing homeomorphism (unique up to isotopy) from B1 to itself.
Topological properties of this homeomorphism imply that a∗∗ = a (* is order 2), * reverses domain
and range, and (ab)∗ = b∗a∗ (* is an anti-automorphism).

For 1-categories based on Spin manifolds, the the nontrivial spin homeomorphism from B1 to
itself which covers the identity gives an order 2 automorphism of c(X )1.

For 1-categories based on Pin− manifolds, we have an order 4 antiautomorphism of c(X )1. For
1-categories based on Pin+ manifolds, we have an order 2 antiautomorphism and also an order 2
automorphism of c(X )1, and these two maps commute with each other.

Similar arguments show that modules for disk-like 1-categories are essentially the same thing as
traditional modules for traditional 1-categories.

C.2 Pivotal 2-categories

Let C be a disk-like 2-category. We will construct from C a traditional pivotal 2-category. (The
“pivotal” corresponds to our assumption of strong duality for C.)

We will try to describe the construction in such a way the the generalization to n > 2 is clear,
though this will make the n = 2 case a little more complicated than necessary.

Before proceeding, we must decide whether the 2-morphisms of our pivotal 2-category are shaped
like rectangles or bigons. Each approach has advantages and disadvantages. For better or worse, we
choose bigons here.

Define the k-morphisms Ck of C to be C(Bk)E , where Bk denotes the standard k-ball, which we
also think of as the standard bihedron (a.k.a. globe). (For k = 1 this is an interval, and for k = 2
it is a bigon.) Since we are thinking of Bk as a bihedron, we have a standard decomposition of
the ∂Bk into two copies of Bk−1 which intersect along the “equator” E ∼= Sk−2. Recall that the
subscript in C(Bk)E means that we consider the subset of C(Bk) whose boundary is splittable along
E. This allows us to define the domain and range of morphisms of C using boundary and restriction
maps of C.

Choosing a homeomorphism B1 ∪ B1 → B1 defines a composition map on C1. This is not
associative, but we will see later that it is weakly associative.

Choosing a homeomorphism B2 ∪B2 → B2 defines a “vertical” composition map on C2 (Figure
40). Isotopy invariance implies that this is associative. We will define a “horizontal” composition
later.

Given a ∈ C1, define 1a = a× I ∈ C2 (pinched boundary). Extended isotopy invariance for C
shows that this morphism is an identity for vertical composition.

Given x ∈ C0, define 1x = x×B1 ∈ C1. We will show that this 1-morphism is a weak identity.
This would be easier if our 2-morphisms were shaped like rectangles rather than bigons.

In showing that identity 1-morphisms have the desired properties, we will rely heavily on the
extended isotopy invariance of 2-morphisms in C. This means we are free to add or delete product
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Figure 40: Vertical composition of 2-morphisms
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a
x

a

x
x× I

Figure 41: Producing weak identities from half pinched products

regions from 2-morphisms.
Let a : y → x be a 1-morphism. Define 2-morphsims a → a • 1x and a • 1x → a as shown in

Figure 41. As suggested by the figure, these are two different reparameterizations of a half-pinched
version of a × I. We must show that the two compositions of these two maps give the identity
2-morphisms on a and a • 1x, as defined above. Figure 42 shows one case. In the first step we have
inserted a copy of (x× I)× I. Figure 43 shows the other case. We identify a product region and
remove it.

We define horizontal composition f ∗h g of 2-morphisms f and g as shown in Figure 44. It is not
hard to show that this is independent of the arbitrary (left/right) choice made in the definition, and
that it is associative.

C.3 A∞ 1-categories

In this section, we make contact between the usual definition of an A∞ category and our definition
of a disk-like A∞ 1-category, from §6.1.

Given a disk-like A∞ 1-category C, we define an “mk-style” A∞ 1-category A as follows. The
objects of A are C(pt). The morphisms of A, from x to y, are C(I;x, y) (C applied to the standard
interval with boundary labeled by x and y). For simplicity we will now assume there is only one
object and suppress it from the notation.
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a

x× I
x× I

a

a

x× I
x× I

a

a

x× I
x× I

=

Figure 42: Composition of weak identities, 1

=

Figure 43: Composition of weak identities, 2

A choice of homeomorphism I ∪ I → I induces a chain map m2 : A×A→ A. We now have two
different homeomorphisms I ∪ I ∪ I → I, but they are isotopic. Choose a specific 1-parameter family
of homeomorphisms connecting them; this induces a degree 1 chain homotopy m3 : A⊗A⊗A→ A.
Proceeding in this way we define the rest of the mi’s. It is straightforward to verify that they satisfy
the necessary identities.

In the other direction, we start with an alternative conventional definition of an A∞ algebra:
an algebra A for the A∞ operad. (For simplicity, we are assuming our A∞ 1-category has only
one object.) We are free to choose any operad with contractible spaces, so we choose the operad
whose k-th space is the space of decompositions of the standard interval I into k parameterized
copies of I. Note in particular that when k = 1 this implies a C∗(Homeo(I)) action on A. (Compare
with Example 6.2.10 and the discussion which precedes it.) Given a non-standard interval J ,
we define C(J) to be (Homeo(I → J) × A)/Homeo(I → I), where β ∈ Homeo(I → I) acts via
(f, a) 7→ (f ◦ β−1, β∗(a)). Note that C(J) ∼= A (non-canonically) for all intervals J . We define a
Homeo(J) action on C(J) via g∗(f, a) = (g ◦ f, a). The C∗(Homeo(J)) action is defined similarly.

Let J1 and J2 be intervals. We must define a map C(J1) ⊗ C(J2) → C(J1 ∪ J2). Choose a
homeomorphism g : I → J1 ∪ J2. Let (fi, ai) ∈ C(Ji). We have a parameterized decomposition of I
into two intervals given by g−1 ◦ fi, i = 1, 2. Corresponding to this decomposition the operad action
gives a map µ : A ⊗ A → A. Define the gluing map to send (f1, a1) ⊗ (f2, a2) to (g, µ(a1 ⊗ a2)).
Operad associativity for A implies that this gluing map is independent of the choice of g and the
choice of representative (fi, ai).

It is straightforward to verify the remaining axioms for a disk-like A∞ 1-category.
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Figure 44: Horizontal composition of 2-morphisms
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1999, Vol. II (Dijon), volume 22 of Math. Phys. Stud., pages 307–331. Kluwer Acad. Publ.,
Dordrecht, 2000. MR1805923 arXiv:math.QA/9908040.

[Wal] Kevin Walker. Topological quantum field theories. Available at http://canyon23.net/

math/.

This paper is available online at arXiv:1009.5025, and at http://tqft.net/blobs, and at
http://canyon23.net/math/.

90

http://www.ams.org/mathscinet-getitem?mr=MR2079378
http://dx.doi.org/10.1017/CBO9780511526398.013
http://math.berkeley.edu/~teichner/Papers/Oxford.pdf
http://math.berkeley.edu/~teichner/Papers/Oxford.pdf
http://www.ams.org/mathscinet-getitem?mr=MR2064592
http://dx.doi.org/10.1023/B:MATH.0000017651.12703.a1
http://www.ams.org/mathscinet-getitem?mr=MR1328534
http://dx.doi.org/10.1007/BF01077036
http://www.ams.org/mathscinet-getitem?mr=MR1718089
http://arxiv.org/abs/math.QA/9807037
http://www.ams.org/mathscinet-getitem?mr=MR1805923
http://arxiv.org/abs/math.QA/9908040
http://canyon23.net/math/
http://canyon23.net/math/
http://arxiv.org/abs/1009.5025
http://tqft.net/blobs
http://canyon23.net/math/

	1 Introduction
	1.1 Structure of the paper
	1.2 Motivations
	1.3 Formal properties
	1.4 Specializations
	1.5 Structure of the blob complex
	1.6 Applications
	1.7 n-category terminology
	1.8 Thanks and acknowledgements

	2 TQFTs via fields
	2.1 Systems of fields
	2.2 Systems of fields from n-categories
	2.3 Local relations
	2.4 Constructing a TQFT

	3 The blob complex
	3.1 Definitions
	3.2 Basic properties

	4 Hochschild homology when n=1
	4.1 Outline
	4.2 Technical details
	4.3 An explicit chain map in low degrees

	5 Action of C*(Homeo(M))
	5.1 Alternative definitions of the blob complex
	5.2 Action of C*(Homeo(M))

	6 n-categories and their modules
	6.1 Definition of n-categories
	6.2 Examples of n-categories
	6.3 From balls to manifolds
	6.4 Modules
	6.5 Modules as boundary labels (colimits for decorated manifolds)
	6.6 Morphisms of modules
	6.7 The n+1-category of sphere modules

	7 The blob complex for A-infinity n-categories
	7.1 A product formula
	7.2 A gluing theorem
	7.3 Reconstructing mapping spaces

	8 Higher-dimensional Deligne conjecture
	A The method of acyclic models
	B Adapting families of maps to open covers
	C Comparing n-category definitions
	C.1 1-categories over Set or Vect
	C.2 Pivotal 2-categories
	C.3 A-infinity 1-categories


