Blob homology, part ${\mathbb I}$

Scott Morrison http://tqft.net/ joint work with Kevin Walker

UC Berkeley / Miller Institute for Basic Research

Homotopy Theory and Higher Algebraic Structures, UC Riverside, November 10 2009

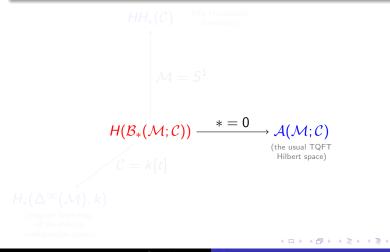
slides, part I: http://tqft.net/UCR-blobs1
slides, part II: http://tqft.net/UCR-blobs2
draft: http://tqft.net/blobs

... homotopical topology and TQFT have grown so close that I have started thinking that they are turning into the language of new foundations.

— Yuri Manin, September 2008

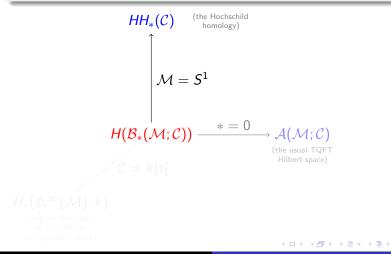
What is blob homology?

The blob complex takes an *n*-manifold \mathcal{M} and an '*n*-category with strong duality' \mathcal{C} and produces a chain complex, $\mathcal{B}_*(\mathcal{M}; \mathcal{C})$.



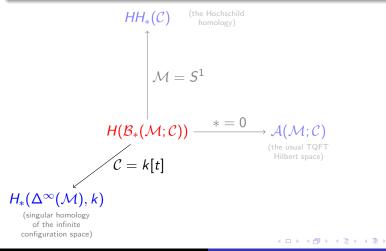
What is blob homology?

The blob complex takes an *n*-manifold \mathcal{M} and an '*n*-category with strong duality' \mathcal{C} and produces a chain complex, $\mathcal{B}_*(\mathcal{M}; \mathcal{C})$.



What is blob homology?

The blob complex takes an *n*-manifold \mathcal{M} and an '*n*-category with strong duality' \mathcal{C} and produces a chain complex, $\mathcal{B}_*(\mathcal{M}; \mathcal{C})$.



Defining *n*-categories is fraught with difficulties

I'm not going to go into details; I'll draw 2-dimensional pictures, and rely on your intuition for pivotal 2-categories.

Kevin's talk (part III) will explain the notions of 'topological *n*-categories' and ' A_{∞} *n*-categories'.

- Defining *n*-categories: a choice of 'shape' for morphisms.
- We allow all shapes! A vector space for every ball.
- 'Strong duality' is integral in our definition.

Fields and pasting diagrams

Pasting diagrams

Fix an *n*-category with strong duality C. A *field* on \mathcal{M} is a pasting diagram drawn on \mathcal{M} , with cells labelled by morphisms from C.

Example ($C = TL_d$ the Temperley-Lieb category)

Given a pasting diagram on a ball, we can evaluate it to a morphism. We call the kernel the *null fields*.

Background: TQFT invariants

Definition

A decapitated n + 1-dimensional TQFT associates a vector space $\mathcal{A}(\mathcal{M})$ to each n-manifold \mathcal{M} .

('decapitated': no numerical invariants of n + 1-manifolds.)

If the manifold has boundary, we get a category. Objects are boundary data, $\operatorname{Hom}_{\mathcal{A}(\mathcal{M})}(x, y) = \mathcal{A}(\mathcal{M}; x, y)$.

We want to extend 'all the way down'. The *k*-category associated to the n - k-manifold \mathcal{Y} is $\mathcal{A}(\mathcal{Y} \times B^k)$.

Definition

Given an n-category C, the associated TQFT is

 $\mathcal{A}(\mathcal{M}) = \mathcal{F}(\mathcal{M})/\ker ev,$

fields modulo fields which evaluate to zero inside some ball.

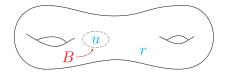
Definition of the blob complex, k = 0, 1

Motivation

A *local* construction, such that when \mathcal{M} is a ball, $\mathcal{B}_*(\mathcal{M}; \mathcal{C})$ is a resolution of $\mathcal{A}(\mathcal{M}; \mathcal{C})$.

 $\mathcal{B}_0(\mathcal{M};\mathcal{C})=\mathcal{F}(\mathcal{M})\text{, arbitrary pasting diagrams on }\mathcal{M}.$

$$\mathcal{B}_1(\mathcal{M};\mathcal{C}) = \mathbb{C} \left\{ (B, u, r) \middle| \begin{array}{c} B \text{ an embedded ball} \\ u \in \mathcal{F}(B) \text{ in the kernel} \\ r \in \mathcal{F}(\mathcal{M} \setminus B) \end{array} \right\}$$



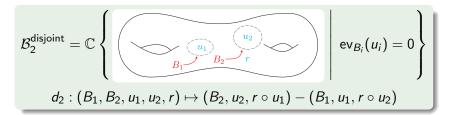
 $d_1:(B,u,r)\mapsto u\circ r$

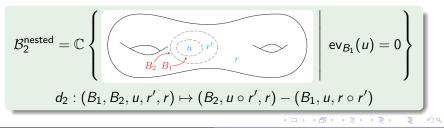
 $\mathcal{B}_0/\operatorname{\mathsf{im}}(d_1)\cong A(\mathcal{M};\mathcal{C})$

Blob homology, part I

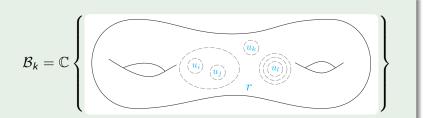
Definition, k = 2

$$\mathcal{B}_2 = \mathcal{B}_2^{\mathsf{disjoint}} \oplus \mathcal{B}_2^{\mathsf{nested}}$$





Definition, general case



k blobs, properly nested or disjoint, with "innermost" blobs labelled by pasting diagrams that evaluate to zero.

$$d_k: \mathcal{B}_k \to \mathcal{B}_{k-1} = \sum_i (-1)^i (\text{erase blob } i)$$

Hochschild homology

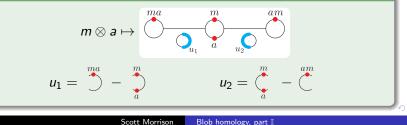
TQFT on S^1 is 'coinvariants'

$$\mathcal{A}(S^1, A) = \mathbb{C}\left\{ \bigcup_{b \in a}^{m} \right\} / \left\{ \bigcap_{a \in a}^{m} - \bigcap_{a \in a}^{m} \right\} = A/(ab - ba)$$

The Hochschild complex is 'coinvariants of the bar resolution'

$$\cdots
ightarrow A \otimes A \otimes A
ightarrow A \otimes A rac{m \otimes a \mapsto ma - am}{} A$$

Theorem (Hoch_{*}(A) $\cong \mathcal{B}_{*}(S^{1}; A)$)



Scott Morrison

Theorem

There's a chain map

$$\mathcal{C}_*(\mathsf{Homeo}(\mathcal{M}))\otimes\mathcal{B}_*(\mathcal{M}) o\mathcal{B}_*(\mathcal{M}).$$

which is associative up to homotopy, and compatible with gluing.

Taking H_0 , this is the mapping class group acting on a TQFT skein module.

Higher Deligne conjecture

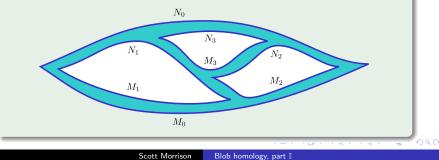
Deligne conjecture

Chains on the little discs operad acts on Hochschild cohomology.

Call $\operatorname{Hom}_{A_{\infty}}(\mathcal{B}_{*}(\mathcal{M}),\mathcal{B}_{*}(\mathcal{M}))$ 'blob cochains on \mathcal{M} '.

Theorem* (Higher Deligne conjecture)

Chains on the *n*-dimensional fat graph operad acts on blob cochains.



$\mathcal{B}_*(Y imes [0,1])$ is naturally an A_∞ category

*m*₂: gluing $[0,1] \simeq [0,1] \cup [0,1]$

 m_k : reparametrising [0, 1]

If $Y \subset \partial X$ then $\mathcal{B}_*(X)$ is an A_∞ module over $\mathcal{B}_*(Y)$.

Theorem (Gluing formula)

When
$$Y \sqcup Y^{op} \subset \partial X$$
,
 $\mathcal{B}_*(X \bigcup_Y \cap) \cong \mathcal{B}_*(X) \bigotimes_{\mathcal{B}_*(Y)}^{A_{\infty}} \cap.$

In principle, we can compute blob homology from a handle decomposition, by iterated Hochschild homology.

く 伺 トーイ ヨート・イヨート