
FIELDS AND LOCAL RELATIONS

SCOTT MORRISON
NOTES FOR TEICHNER’S HOT TOPICS COURSE

This talk is essentially a ‘warm-up’ for the main ideas of the blob complex paper. For the
most part, it’s intended as a summary of how to think about topological quantum field theories
via ‘fields and local relations’. We’ll look at some examples of fields, and then use these to
motivate the axiomatics. This will get us ready for reading §3, the first definition of the blob
complex. As we go, I’ll also sketch the relationship between fields and local relations and higher
categories. For the most part I’ll be a little vague about the definitions of higher categories,
and instead try to talk about fields and local relations in a way that conveys the intuitions for
our later definition of a ‘disklike n-category’, in §6.

1. Examples of fields

The barebones data of an ‘n-dimensional system of fields’ F is a collection of functors Fk,
for 0 ≤ k ≤ n, from the groupoid of k-manifolds and homeomorphisms to the category of sets.
That is, we have to specify the ‘set of fields on M ’, for any manifold M of dimension at most
n, along with a prescription for how these sets transform under homeomorphisms of M .

Whenever we have a system of fields, we also need the ‘local relations’. This is a functor U
from the groupoid of n-balls and homeomorphisms to the category of sets, such that U ⊂ F
and homeomorphisms act compatibly. Note that the local relations are only defined on balls,
not arbitrary n-manifolds (hence ‘local’), and they only live at the top dimension.

There are two main examples which will motivate the precise definitions, so we’ll go and
understand these in some detail first.

1.1. Maps to a target space. Fixing a target space T , we can define a system of fields
Maps(− → T ). Actually, it’s best to modify this a bit, just in the top dimension, where
we’ll linearize in the following way: define Maps(Xn → T ) on an n-manifold X to be formal
linear combinations of maps to T , extending a fixed linear map on ∂X. (That is, arbitrary
boundary conditions are allowed, but we can only take linear combinations of maps with the
same boundary conditions.) This will be a common feature for all ‘linear’ systems of fields: at
the top dimension the set associated to an n-manifold will break up into a vector space for each
possible boundary condition.

What then are the local relations? We define U(B), the local relations on an n-ball B, to be
the subspace of Maps(B → T ) spanned by differences f − g of maps which are homotopic rel
boundary.

Let’s identify some useful features of this system of fields and local relations; later these will
inspire the axioms.

Boundaries: We can restrict f : X → T to a map ∂f : ∂X → T .
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Gluing: Given maps f : X → T and g : Y → T , and homeomorphic copies of S in the
boundaries of X and Y , such that f |S = g|S , we can glue the maps together to obtain
f •S g : X ∪S Y → T .

Relations form an ideal: Suppose X and Y are n-balls, and we can glue them together
to form another n-ball X ∪S Y . If f, g : X → T are homotopic maps, and h : Y → T
is an arbitrary map, and all agree on the (n − 1)-ball S, then f •S h and g •S h are
again homotopic to each other. Said otherwise, f − g was a local relation on X, and
(f − g) •S h is a local relation on X ∪S Y .

Finally, a puzzle for you to think about if the next example gets bogged down in nitty-gritty:

Puzzle 1.1. Let U(X) denote fields of the form u • f , where u ∈ U(B) for some ball B in X,
and f is a map from X \B to T . Then

Maps(X → T )/U(X) ∼= C[X → T ]

Why?

(The difficulty is meant to be that we only mod out by ‘local’ homotopies, not all homotopies.)

1.2. String diagrams. This will be a more complicated example, and also a very important
one. Essentially, it’s a recipe for constructing a system of fields and local relations from a suit-
able n-category. As we haven’t yet talked about a definition of an n-category, I’ll be somewhat
vague about what we actually require from one. I’ll spell out the construction precisely in the
cases n = 1 and n = 2, where there are familiar concrete definitions to work with. Later, in
§6, when we introduce our notion of a ‘disklike n-category’, you should think of the definition
as being optimized to make the transition back and forth between n-categories and systems of
fields as straightforward as possible.

The core idea is to fix a diagrammatic calculus which represents the algebraic operations in
an n-category. The diagrams are drawn in n-balls. Each diagram is a recipe for composing some
collection of morphisms. Modifying the diagram by an isotopy should not change the result of
the corresponding composition (perhaps for some types of n-categories not all isotopies should
be allowed, but we’ll generally work in ‘most invariant’ situation, which roughly corresponds to
the n-categories have lots of nice duality properties). Moreover, the allowed diagrams should
be specified by some ‘local rule’: e.g. the diagrams are locally modeled on a certain collection
of subdiagrams. Because the diagrams are specified in this way, we can then allow ourselves
to draw the same diagrams on arbitrary manifolds, and these become our fields. When we
restrict our attention to balls, the ‘local relations’ are precisely those diagrams are a recipe for
a composition which is zero in the n-category.

There are several alternative schemes for realizing this idea. Two that may be familiar are
‘string diagrams’ (which we’ll discuss in detail below, beloved of quantum topologists) and
‘pasting diagrams’ (familiar to category theorists). In fact, these are geometrically dual to each
other (and one could look at them as limiting cases of diagrams based on handle decompositions,
as the core or co-core diameter goes to zero). The use of string diagrams significantly predates
the term (or indeed ‘quantum topology’, and perhaps also ‘higher category’): Penrose was using
them by the late ’60s.

Fix an n-category C, according to your favorite definition. Suppose that it has ‘the right
sort of duality’. Let’s state the general definition, but then to preserve sanity unwind it in
dimensions 1 and 2. A string diagram on a k-manifold X consists of

• a ‘conic stratification’ (see below, think “looks locally like a cell decomposition”) of X;
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• a general position homeomorphism from the link of each j-cell to the boundary of the
standard (k − j)-dimensional bihedron; and
• a labelling of each j-cell by a (k−j)-dimensional morphism of C, with domain and range

determined by the labelings of the link of the j-cell.

Actually, this data is just a representative of a string diagram, and we consider this data up
to a certain equivalence; we can modify the homeomorphism parametrizing the link of a j-cell,
at the expense of replacing the corresponding (k − j)-morphism labelling that j-cell by the
‘appropriate dual’.

What is a conic stratification? Actually, I just made up that name. In the blob complex paper
we just say “cell decomposition” but this is wrong (and we’ll fix it)! Really we want something
that looks locally like a cell decomposition. Let’s postpone this, as it’s just a distraction for
now.

When X has boundary, we ask that each cell meets the boundary transversely (so cells
meeting the boundary are only half-cells). Note that this means that a string diagram on X
restricts to a string diagram on ∂X.

1.2.1. n = 1. Now suppose n = 1; here the right sort of duality means that we want C to be a
∗-1-category.

A string diagram on a 0-manifold consists just of a labeling of each point with an object of
C.

A string diagram on a 1-manifold S consists of

• a cell decomposition of S: the 0-cells form a finite collection of points in the interior of
S, the 1-cells are the complementary intervals;
• a labeling of each 1-cell by an object of C;
• a transverse orientation of each 0-cell;
• a labeling of each 0-cell by a morphism of C, with source and target given by the labels

on the 1-cells on the ‘incoming’ and ‘outgoing’ sides of the 0-cell.

As above, we allow ourselves to switch the transverse orientation of 0-cell, as long as we replace
the label on that 0-cell by its ∗.

Note that if S is an interval, we can interpret the string diagram as a recipe for a morphism
in C, at least after we fix one boundary point as ‘incoming’ and the other ‘outgoing’. There’s
a (half-)1-cell adjacent to the incoming boundary point, and another adjacent to the outgoing
boundary point. These will be the source and target of the morphism we build. Flip all the
transverse orientations of the 0-cells so they are compatible with the overall orientation of the
interval. Now we simply compose all the morphisms living on the 0-cells.

If C were a ∗-algebra (i.e., it has only one 0-morphism) we could forget the labels on the
1-cells, and a string diagram would just consist of a finite collection of oriented points in the
interior, labelled by elements of the algebra, up to flipping an orientation and taking ∗ of the
corresponding element.

1.2.2. n = 2. Now suppose C is a (strict) pivotal ∗-2-category. (The usual definition in the
literature is for a pivotal tensor category; by a pivotal 2-category we mean to take the axioms
for a pivotal tensor category, think of a tensor category as a 2-category with only one object,
then forget that restriction. There is an unfortunate other use of the phrase ‘pivotal 2-category’
in the literature, which actually refers to a 3-category, but that’s their fault.) The ∗ here means
that in addition to being able to rotate 2-morphisms via the pivotal structure, we can also
reflect them.



4 SCOTT MORRISON NOTES FOR TEICHNER’S HOT TOPICS COURSE

A string diagram on a 0-manifold is a labeling of each point by an object (a.k.a. a 0-
morphism) of C. A string diagram on a 1-manifold is exactly as in the n = 1 case, with labels
taken from the 0- and 1-morphisms of C.

A string diagram on a 2-manifold Y consists of

• a ‘generalized cell decomposition’ of Y : the 1-skeleton is a graph embedded in Y , but
the 2-cells don’t need to be balls.
• a 0-morphism of C on each 2-cell;
• a transverse orientation of each 1-cell;
• a 1-morphism of C on each 1-cell, with source and target given by the labels on the

2-cells on the incoming and outgoing sides;
• for each 0-cell, a homeomorphism of its link to S1 (this is ‘the boundary of the standard

2-bihedron’) such that none of the intersections of 1-cells with the link are sent to ±1
(this is the ‘general position’ requirement; the points ±1 are special, as part of the
structure of a standard bihedron);
• a 2-morphism of C for each 0-cell, with source and target given by the labels of the

1-cells crossing the incoming and outgoing faces of the bihedron.

You can see here why we can’t insist on an actual cell decomposition: asking that the 2-cells
are balls is a non-local condition, so we wouldn’t be able to glue fields together.

Let’s spell out this stuff about bihedra. Suppose the neighborhood of a 0-cell looks like the
following.

x

b

c

a

+1−1

(Here the small arrows indicate the transverse orientation of the 1-cells, and the dashes indicate
a parametrization of the link as the boundary of a bihedron.) Which 2-morphism space of C
should the label x belong to? It should be an element of Hom(a, b ⊗ c). But now what if we
modify the parametrization as follows:

x′

b

c

a

+1

−1

What is the element x′? It should be an element of Hom(a⊗ c∗, b), and in a pivotal 2-category
this space is naturally isomorphic to Hom(a, b ⊗ c), so we just choose x′ to be the image of x
under this isomorphism.
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Finally, when Y is a ball, how do we interpret a string diagram on Y as a 2-morphism in
C? First choose a parametrization of Y as a standard bihedron; now ‘sweep out’ the interior
of Y . We’ll build a 2-morphism from the tensor product of the 1-morphisms labeling the 1-
cells meeting the lower boundary to the tensor product of the 1-morphisms labelling the upper
boundary. As we pass critical points in the 1-cells, apply a pairing or copairing map from the
category. As we pass 0-cells, modify the parametrization to match the direction we’re sweeping
out, and compose with the label of the 0-cell, acting on the appropriate tensor factors.

As usual for fields based on string diagrams, the corresponding local relations are exactly the
kernel of this ‘evaluation’ map.

1.3. Conic stratifications. Here’s my attempt to make “looks locally like a cell decomposi-
tion” sensible. A conic stratification of M is a stratification

M0 ⊂M1 ⊂ · · · ⊂Mn = M

(so Mk \Mk−1 is a k-manifold, the connected components of which we’ll still call k-cells, even
though they need not be balls), which has a certain local model.

Any point on k-cell has a neighborhood U which is homeomorphic to Bk ×Cone(X), where
X is some conic stratification of Sn−k−1, and this homeomorphism preserves strata. (In Bk ×
Cone(X), there are no strata below level k, the cone points are the k-strata, and the points
over the i-strata of X form the i+ k + 1 strata.)

It’s interesting to think about the details of this definition in dimensions 3 and maybe even 4,
but in practice we have so few examples of such higher categories that particular axiomatizations
of ‘string diagrams’ are not deeply important.

2. Axioms for fields

A n-dimensional system of fields and local relations (F ,U) enriched in a symmetric monoidal
category S consists of the following data:

fields: functors Fk from k-manifolds (and homeomorphisms) to sets;
boundaries: natural transformations ∂ : Fk → (Fk−1 ◦ ∂);
structure: the structure of an object of S on each set Fn(X; c), and below, appropriate

compatibility at the level of morphisms;
gluing: when ∂X = (Y t Y ) ∪ Z, there is an injective map

Fk(X; y • y • z) ↪→ Fk(X
⋃
Y

; z)

for each y ∈ Fk−1(Y ), z ∈ Fk−1(Z);
identities: natural transformations ×I : Fk → (Fk+1 ◦ ×I);
local relations: a functor U from n-balls (and homeomorphisms) to sets, so U ⊂ F .

and these data satisfy the following properties:

• everything respects the symmetric monoidal structures on k-manifolds (disjoint union),
sets, and S: in particular,

Fk(A tB) = Fk(A)×Fk(B);

• gluing is compatible with action of homeomorphisms;
• the local relations form an ideal under gluing;
• gluing is surjective up to isotopy;
• identities are compatible on the nose with everything in sight.
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Actually in the ‘gluing’ axiom above, the field z on the right hand side actually needs to
be interpreted as the image of z under a gluing map one dimensional down, because it’s now
meant to be a field on Z

⋃
∂Y .

It’s admittedly a little peculiar looking that we insist that gluing is surjective up to isotopy,
but it’s a feature of the examples and turns out to be useful (see the proof of the gluing formula
below). We may actually want to relax this axiom even further: we didn’t talk about this, but
for systems of fields based on pasting diagrams (as opposed to string diagrams) for n-categories,
we need to be able to ‘insert identities’, as well as isotope, before gluing becomes surjective.
‘Inserting an identity’ means cutting open a field somewhere that it is splittable, gluing on an
identity morphism, then using a collaring morphism before gluing the field up again. Essentially
the difference is that string diagrams ‘have identities everywhere’, so they are always splittable
after a small isotopy.

3. TQFT from fields

Given a system of fields and local relations F ,U , we define the corresponding vector space
valued invariant of n-manifolds A as follows. For X an n-manifold, write U(X) for the subspace
of F(X) consisting of the span of the images of a gluing map U(B; c) ⊗ F(X \ B; c) for any
embedded n-ball B ⊂ X, and boundary field c ∈ F(∂B). We then define

A(X) = F(X)/U(X).

It’s clear that homeomorphisms of X act on this space. Actually, this collapses to an action of
the mapping class group:

Lemma 3.1. Homeomorphisms isotopic to the identity act trivially on A(X).

Proof. Any 1-parameter family of homeomorphisms is homotopic (rel boundary) to a family for
which during any sufficiently short interval of time, the homeomorphism is only being modified
inside a ball. The difference between a field at the beginning of such an interval and the field
at the end is in U(X), and hence zero in A(X). �

If X has boundary, we can choose c ∈ F(∂X) and similarly define a vector space A(X; c) =
F(X; c)/U(X; c).

This invariant also extends to manifolds of other dimensions, associating to a codimension
k manifold Y a linear k-category A(Y ). We’ll spell this out below for small values of k, and
postpone the full story until we have our own notion of k-category. Thus the TQFT we obtain
from fields and local relations is ‘fully extended’. On the other hand, often a TQFT invariant
that associates vector spaces to n-manifolds will also associate numbers to (n + 1)-manifolds.
Such a TQFT is called ‘(n + 1)-dimensional’, while one that doesn’t is called alternatively
‘(n + ε)-dimensional’, ‘decapitated’ or ‘topless’. In general the TQFTs from fields and local
relations are just (n + ε)-dimensional, although with some extra conditions on the input we
can produce (n + 1)-dimensional TQFTs. This discussion is almost entirely orthogonal to the
content of the blob complex paper (although c.f. §6.7 on the (n+ 1)-category of n-categories),
so we won’t pursue it here.

To an (n−1)-dimensional manifold Y , we associate a 1-category A(Y ). Its objects are simply
F(Y ). The morphism spaces are given by

Hom(a, b) = A(Y × [0, 1]; a • b).
Composition of morphisms is via gluing then reparametrization:

A(Y × [0, 1]; a • b)⊗A(Y × [0, 1]; b • c)→ A(Y × [0, 2]; a • c)→ A(Y × [0, 1]; a • c).
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The gluing maps themselves are strictly associative, and by the lemma above we don’t have
worry about the reparametrization step here breaking associativity.

If Y itself has boundary, we have some alternatives here. One is to interpret Y × [0, 1] as
the ‘pinched product’, where we collapse the copy of [0, 1] over each point of ∂Y . The other
is to fix c ∈ F(∂Y ), and to define A(Y ; c), with objects F(Y ; c) and in which Hom(a, b) =
A(Y × [0, 1]; a • b • (c× [0, 1])).

Going deeper, we associate a 2-category A(P ) to an (n − 2)-dimensional manifold P . The
0-morphisms are F(P ), the 1-morphisms are F(P × I), and they compose by gluing intervals
together. (Note that this composition is not associative on the nose, but will be associative up
to a 2-morphism shortly.) Finally the 2-morphisms from a to b, each 1-morphisms from x to y
are given by the vector space

A(P × I × I;

a

y
×
I

b

x
×
I

)

3.1. Gluing formulas. Even though the definition of these TQFTs is via an abstract looking
(not to mention scarily infinite-dimensional) quotient, we can prove various ‘gluing formulas’
that allow us to compute the invariants algebraically.

3.1.1. Codimension 1 gluing. Suppose an n-manifold X contains a copy of Y , an n−1 manifold,
as a codimension 0 submanifold of its boundary. Fix a boundary condition c ∈ F(∂X \ Y ).
Then the collection A(X; c • d), as d varies over F(Y ), forms a module over the 1-category
A(Y ). The action is via gluing a collar onto Y , then applying a ‘collaring homeomorphism’
X ∪Y Y × I → X.

If X contains two copies of Y , A(X) is then a bimodule over A(Y ). Below, we’ll compute
the invariant of the ‘glued up’ manifold X

⋃
Y as the self-tensor product of this bimodule.

What is the self-tensor product of a bimodule over a category? First, what is the tensor
product of a left-module and a right-module? Recall a module M over a category C is a
collection of vector spaces Mc indexed by an object c ∈ C, along with a linear map f :Ma →
Mb for each morphism f : a 7→ b of C. The tensor product of a left- and a right-module is
defined to be the vector space

M
⊗
C
N =

(⊕
c∈C
Mc ⊗ cN

)/{
mf ⊗ n−m⊗ fn | f : c 7→ c′

}
just as you’d expect. The self-tensor product of a bimodule CXC is then

X
⊗
C

=
⊕
c∈C

cXc/(xf − fx).

Lemma 3.2. Any isotopy of X
⋃

Y is homotopic to a composition of ‘collar shift’ isotopies
and isotopies that are constant on Y (i.e. the image of an isotopy of X itself).

Proof. First make the isotopy act locally. When it’s acting in a small ball overlapping Y ,
conjugate by a collar shift to move it off. �

Theorem 3.3.

A(X
⋃
Y

) ∼= A(X)
⊗
A(Y )
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Proof. Certainly there is a map
⊕

y∈F(Y )A(X; y • y) → A(X
⋃

Y ). We send an element of

A(X) to the corresponding ‘glued up’ element of A(X
⋃

Y ). This is well-defined since U(X)
maps into U(X

⋃
Y ). This map descends down to a map

A(X)
⊗
A(Y )

→ A(X
⋃
Y

)

since the fields ev and ve (here e ∈ A(Y ), v ∈ A(X)) are isotopic on X
⋃

Y (see Figure 1).

v

e

v

e

v

e

ve ∼ ev

Figure 1. ve and ev differ by a collar shift on the glued manifold

There is a map the other way, too. There isn’t quite a map F(X
⋃

Y ) → F(X), since
a field on X

⋃
Y need not be splittable along Y . Nevertheless, every field is isotopic to

one that is splittable along Y , and combining this with the lemma above we obtain a map
F(X

⋃
Y )/(isotopy)→ A(X)

⊗
A(Y ) . We now need to show that this descends to a map

from A(X
⋃

Y ). Consider an field of the form u • f , for some ball B embedded in X
⋃

Y
and u ∈ U(B), f ∈ F(X

⋃
Y \ B). Now B might cross Y , but we can choose an isotopy of

X
⋃

Y so that it doesn’t. Thus u•f is sent to a field in U(X), and is zero in A(X)
⊗

A(Y ) .

It’s not too hard to see that these maps are mutual inverses. �

We can also state a codimension 2 gluing formula, but even just defining what modules
and tensor products over 2-categories mean is painful. (Maybe I’ll expand these notes in the
unlikely event that I still have time in the second talk.) Our eventual notion of n-category will
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significantly alleviate this problem, but we still shy away from stating a nice gluing formula in
all codimensions simply because the blob complex paper never defines a notion of equivalence of
k-categories. We’re pretty sure we’re on the right track with this, however, and the statements
are all relatively easy.

4. n-categories and fields

Roughly, the data of a system of fields and local relations and the data of a disklike n-category
(from §6) are intended to be equivalent.

You essentially recover the axioms for a disklike n-category by just remembering everything
about F(X)/U(X) for X a ball. Almost equivalently, A(•) gives a disklike n-category.

Going the other direction, we’ve already sketch one method of producing a system of fields
from an n-category (string diagrams). In §6.3 we give another (although not explicitly), based
on ball decompositions, which are roughly generalized pasting diagrams.
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